Single-Chip Multiprocessors:
The Next Wave of Computer
Architecture Innovation

Gur1 Sohi

University of Wisconsin

Also consult for Sun Microsystems

Outline

e Waves of innovation in architecture

e Innovation in uniprocessors

e American football

e Uniprocessor innovation postmortem
e Models for parallel execution

e Future CMP microarchitectures

Wawves of Research and Innovation

e A new direction is proposed or new opportunity
becomes available

e The center of gravity of the research community
shifts to that direction
= SIMD architectures in the 1960s
= HLL computer architectures in the 1970s
= RISC architectures in the early 1980s
= Shared-memory MPs in the late 1980s
= 00O speculative execution processors in the 1990s

Waves

e Wave is especially strong when coupled with
a “step function” change in technology

* Integration of a processor on a single chip
* Integration of a multiprocessor on a chip

Uniprocessor Innovation Wave: Part 1

e Many years of multi-chip implementations
* Generally microprogrammed control

= Major research topics: microprogramming,
pipelining, quantitative measures

e Significant research in multiprocessors

Uniprocessor Innovation Wave: Part 2

e Integration of processor on a single chip
* The inflexion point
= Argued for different architecture (RISC)
e More transistors allow for different models
= Speculative execution
e Then the rebirth of uniprocessors
= Continue the journey of innovation
. = Totally rethink uniprocessor microarchitecture
W = Jim Keller: “Golden Age of Microarchitecture”

)

Uniprocessor Innovation Wave: Results

e Current uniprocessor very

different from 1980’s ot
un i p rocessor Fault Tolerance
e Uniprocessor research \ Josutiow
. & e | N
dominates conferences § SNl |, | |
S 40 2 2/2 z>\\ Interconnectmn
e MICRO comes back from N| LN LUIE ||| | ENetworks
N Ng (4 %
the dead § ‘4 27 IMultiprocessors
= Portland was e
turning pOint 0" g5 1980 1985 1990 1995 2000

Year

ISCA papers 1973-2001

* Top 1% (Citeseer)

Source: Hill and Rajwar, 2001

Why Uniprocessor Innovation Wave?

e Innovation needed to happen

* Alternatives (multiprocessors) not practical
option for using additional transistors

e Innovation could happen: things could be
done differently

* |dentify barriers (e.g., to performance)

» Use transistors to overcome barriers (e.g., via
speculation)

[Lessons from Uniprocessors

e Don’t underestimate potential innovation

e Barriers or limits become opportunities for
innovation

» Via novel forms of speculation
= E.g., barriers in Wall’s study on limits of ILP

American Football

e Gaining yardage
e Have running game

= Build entire team and game plan around
running

* Big offensive line
= Come up with clever running plays

10

American Football

e Now have a passing game

= Allows much better yardage gain with a
different type of player.

e Coach rethinks entire team with new
capability
= Different offensive line
* Different plays

e It’s a whole new ball game!!

Wad/
BN [R RS 1D

11

Uniprocessor Evolution Postmortem

e Improve single progam performance
e Uniprocessor was the only option

= |[LP is the parallelism of choice
e Power was not a constraint initially

= Power inefficiency OK

e Speculation needed to expose ILP and
overcome barriers to ILP

* In-band support for speculation
* OK for small amounts of speculation

12

Uniprocessor Evolution Postmortem

e Build big uniprocessor with support for
variety of forms of speculation

» Like big offensive line

= Not power efficient, but met then power
budget

e Can overlap small latencies but longer
latencies are problematic

13

Uniprocessor Evolution Postmortem

e Uniprocessor capabilities underutilized

= Put more threads on it for multithreaded
workloads

* Increase utilization of (power-inefficient)
resources

e Lots of speculation to tolerate large latencies
= Out-of-band support for speculation

e Free ride for programmers: performance
without additional effort

Wad/
BN [R RS 1D

14

Single Program Performance

e Parallel execution of low-latency operations
(if possible)

e Support for speculation
= To expose parallelism

e Overlap long latency operations with
(speculative) computation

e Will need clever ways for above in CMP

15

Current State

e Inflexion point: can put multiple cores on
chip
* |[LP not only option for parallelism

= Multithreading each core not only option for
supporting multiple threads

* Processor customization for special functions
possible

e We now have a passing game
= How to develop plays for a passing game?

16

Big Picture CMP Issues

e What should the microarchitecture for a CMP
be?
* Types of cores
= Memory hierarchies
* Inter-core communication
e What will be running on the CMP?
* No free ride for programmers
= But price of ride can’t be high

17

Roadmap for CMP Expectations

e Summary of traditional parallel processing

e Revisiting traditional barriers and overheads
to parallel processing

e Expectations for CMP applications and
workloads

e CMP microarchitectures

18

Multiprocessor Architecture

e Take state-of-the-art uniprocessor

e Connect several together with a suitable
network

= Have to live with defined interfaces

e Expend hardware to provide cache coherence
and streamline inter-node communication

= Have to live with defined interfaces

19

Soitware Responsibilities

e Reason about parallelism, execution times
and overheads

= This is hard
e Use synchronization to ease reasoning

= Parallel trends towards serial with the use of
synchronization

e Very difficult to parallelize transparently

20

Net Result

e Difficult to get parallelism speedup
= Computation is serialized

* Inter-node communication latencies
exacerbate problem

e Multiprocessors rarely used for parallel
execution

e Typical use: improve throughput

e This will have to change
= Will need to rethink “parallelization”

Wad/
E I RS (D

21

Rethmking Parallelization

e Speculative multithreading

e Speculation to overcoming other
performance barriers

¢ Revisiting computation models for
parallelization

e How will parallelization be achieved?

22

Speculative Multithreading

e Speculatively parallelize an application

= Use speculation to overcome ambiguous
dependences

= Use hardware support to recover from mis-
speculation

e E.g., multiscalar

e Use hardware to overcome software barrier to
parallelization

23

Overcoming Barriers: Memory Models

e Weak models proposed to overcome
performance limitations of SC

e Speculation used to overcome “maybe”
dependences

e Series of papers showing SC can achieve
performance of weak models

24

Implications

e Strong memory models not necessarily low
performance

e Programmer does not have to reason about
weak models

e More likely to have parallel programs written

25

Overcoming Barriers: Synchronization

e Synchronization to avoid “maybe”
dependences

= Causes serialization
e Speculate to overcome serialization

e Recent work on techniques to dynamically
elide synchronization constructs

26

Implications

e Programmer can make liberal use of
synchronization to ease programming

e Little performance impact of synchronization
e More likely to have parallel programs written

oy

Revisiting Parallelization Models

e Transactions
= simplify writing of parallel code

= very high overhead to implement semantics in
software

e Hardware support for transactions will exist
= Similar to hardware for out-of-band speculation
= Speculative multithreading is ordered transactions
= No software overhead to implement semantics

e More applications likely to be written with
transactions

Wad/
E Ol RS

28

Other Models: Example 1

for (i=0; i<CHUNKS; i++) {
e (j=0; J<CHUNK SIZE; j++) { (164.g21pZSPCC.C)

random text[i] [J] = ran() *256;

hi = seedi/ Q QUOTIENT;
lo seedi% Q QUOTIENT;
T = A MULTIPLIER*lo- R REMAINDER*hi;
if (T > 0)
seedi = T;
else

oy seedi = T + M MODULUS;

return ((float) seedi / M MODULUS) ;

Example 1

.. ran () ..

.. ran () ..

.. ran () ..

30

Other Models: Example 2

. route net (..) { add to heap () { alloc (size)

for (..) alloc () lock memheap
add to heap() insert element scan memheap
o compute cost full to empty
get heap head() if free
heapify () obtain
unlock

get heap head () ({ identify bin ~ size
- — return

return top
fix up heap ()

(175.vpr:route.c)

31

Example 2

route ()

get heap head()

route)

Lookup new adds

route ()

get heap head()

Other Expectations for Future Code

e Significant pressure for robust, reliable
applications

e Code will have additional functionality for
error checking, etc.

= Overhead code considered perf. barrier
= Overhead code is parallelization opportunity

e Successful parallelization of overhead will
encourage even more use

33

Example-array bounds checks

e Add two arrays:

void add(int[] al, int[] a2) {
for (int i = 0; i < result.length; i++) {
result[i] = a[i] + b[i];

34

Example-array bounds checks

e Loop body

= w/o checks =12 insts
= with checks = 21 insts

No array-bounds

checks

%02, 2, %00
%02, %05

%00, %il, %04
%00, %i0, %ol
%00, %07, %03
.LL12

%02, 1, %02
[$01+12], %00
[$04+12], %01
%00, %0l, %00
.LL13

%00, [%03+12]

With array-
bounds checks

%$il, %03, %07
%02, %gl
.LL14

%$i0, %03, %04
[$10+%1lo(x)], %ol
[$01+8], %00
%$0l, %03, %05
%02, %00
.LL23

%03, 4, %03
%02, %gl
.LL23

[$1i1+8], %00
%02, %00
.LL23
[$04+4], %0l
[$07+4], %00
%02, 1, %02
%$0l, %00, %00
.LL15

%00, [%05+4]

35

%02, 2, %00
%02, %05

%00, %il, %04
%00, %i0, %ol
%00, %07, %03
.LL12

%02, 1, %02
[$01+12], %00
[$04+12], %01
%00, %0l, %00
.LL13

%00, [%03+12]

%02, 2, %00
%02, %05

%00, %il, %o4
%00, %i0, %ol
%00, %07, %03
.LL12

%02, 1, %02
[$01+12], %00
[$04+12], %ol
%00, %o0l, %00
.LL13

%00, [%03+12]

114 e Execute checking code in
[$01+8], %00
.LL23

S— e Divide program into tasks
voz, 2ol

%$i0, %03, %04 -

[310+410(z)], %ol parallel with task

%0l, %03, %05 O .

502, %00 hecking code commits or
s ar aborts task computation
.LL23

[$1i1+8], %00

%02, %00

.LL23

[$04+4], %ol

[$07+4], %00

%02, 1, %02

%0l, %00, %00

.LL15

%00, [%05+4]

%$il, %03, %o7
%02, %gl

.LL14

%$i0, %03, %04
[$10+%1o(xr)], %ol
[$01+8], %00

%0l, %03, %05

%02, %00
.LL23

%03, 4, %03
%02, %gl
.LL23

[$1i1+8], %00
%02, %00

Other software requirements

e Robust, error-tolerant software will be
needed to work on error-prone
hardware

» Likely abundant source of parallelism
* Need to figure out how to do this

37

Vehicle for Parallelization

e Tradition: automatic or manual parallelization
of user-level code

* Too much code to target
= Too difficult

e Successful vehicle for parallelization will
target code selectively

e OS and libraries
= Written to facilitate parallel execution

38

Impact of Parallelization

e Expect different characteristics for code on
each core

e More reliance on inter-core parallelism
e Less reliance on intra-core parallelism
e May have specialized cores

39

Microarchitectural Implications

e Processor Cores
= Skinny, less complex
= Perhaps specialized

e Memory structures (i-caches, TLBs, d-
caches)
» Significant sharing possible

* Low-overhead communication possible

40

Microarchitectural Implications

e Novel Coherence Techniques (e.g., separate
performance from correctness

= Token coherence
= Coherence decoupling

e Pressure on non-core techniques to tolerate
longer latencies

® Helper threads, pre-execution
® Other novel memory hierarchy techniques

41

Microarchitectural Implications

¢ Significant increase in bandwidth demand

= Use on-chip resources to attenuate off-chip
bandwidth demand

42

Summary.

e It’s a whole new ball game!
e New opportunities for innovation in MPs

e New opportunities for parallelizing
applications

e Expect little resemblance between MPs today
and CMPs in 15 years

e We need to invent and define differences

43

