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OutlineOutline

Waves of innovation in architecture
Innovation in uniprocessors
American football
Uniprocessor innovation postmortem
Models for parallel execution
Future CMP microarchitectures
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Waves of Research and InnovationWaves of Research and Innovation

A new direction is proposed or new opportunity 
becomes available
The center of gravity of the research community 
shifts to that direction

SIMD architectures in the 1960s
HLL computer architectures in the 1970s
RISC architectures in the early 1980s
Shared-memory MPs in the late 1980s
OOO speculative execution processors in the 1990s 
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WavesWaves

Wave is especially strong when coupled with 
a “step function” change in technology

Integration of a processor on a single chip
Integration of a multiprocessor on a chip



5

UniprocessorUniprocessor Innovation Wave: Part 1Innovation Wave: Part 1

Many years of multi-chip implementations
Generally microprogrammed control
Major research topics: microprogramming, 
pipelining, quantitative measures

Significant research in multiprocessors
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UniprocessorUniprocessor Innovation Wave: Part 2Innovation Wave: Part 2

Integration of processor on a single chip
The inflexion point
Argued for different architecture (RISC)

More transistors allow for different models
Speculative execution

Then the rebirth of uniprocessors
Continue the journey of innovation
Totally rethink uniprocessor microarchitecture
Jim Keller: “Golden Age of Microarchitecture”
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UniprocessorUniprocessor Innovation Wave: ResultsInnovation Wave: Results

Current uniprocessor very 
different from 1980’s 
uniprocessor
Uniprocessor research 
dominates conferences 
MICRO comes back from 
the dead

Portland was 
turning point
Top 1% (Citeseer)

Source: Hill and Rajwar, 2001
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Why Why UniprocessorUniprocessor Innovation Wave?Innovation Wave?

Innovation needed to happen
Alternatives (multiprocessors) not practical 
option for using additional transistors

Innovation could happen: things could be 
done differently

Identify barriers (e.g., to performance)
Use transistors to overcome barriers (e.g., via 
speculation)
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Lessons from Lessons from UniprocessorsUniprocessors

Don’t underestimate potential innovation
Barriers or limits become opportunities for 
innovation

Via novel forms of speculation
E.g., barriers in Wall’s study on limits of ILP
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American FootballAmerican Football

Gaining yardage
Have running game

Build entire team and game plan around 
running
Big offensive line
Come up with clever running plays



11

American FootballAmerican Football

Now have a passing game
Allows much better yardage gain with a 
different type of player.

Coach rethinks entire team with new 
capability

Different offensive line
Different plays

It’s a whole new ball game!!
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UniprocessorUniprocessor Evolution PostmortemEvolution Postmortem

Improve single progam performance
Uniprocessor was the only option

ILP is the parallelism of choice
Power was not a constraint initially

Power inefficiency OK
Speculation needed to expose ILP and 
overcome barriers to ILP

In-band support for speculation
• OK for small amounts of speculation
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UniprocessorUniprocessor Evolution PostmortemEvolution Postmortem

Build big uniprocessor with support for 
variety of forms of speculation

Like big offensive line
Not power efficient, but met then power 
budget

Can overlap small latencies but longer 
latencies are problematic
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UniprocessorUniprocessor Evolution PostmortemEvolution Postmortem

Uniprocessor capabilities underutilized
Put more threads on it for multithreaded 
workloads
Increase utilization of (power-inefficient) 
resources

Lots of speculation to tolerate large latencies
Out-of-band support for speculation

Free ride for programmers: performance 
without additional effort
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Single Program PerformanceSingle Program Performance

Parallel execution of low-latency operations 
(if possible)
Support for speculation

To expose parallelism
Overlap long latency operations with 
(speculative) computation
Will need clever ways for above in CMP
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Current StateCurrent State

Inflexion point: can put multiple cores on 
chip

ILP not only option for parallelism 
Multithreading each core not only option for 
supporting multiple threads
Processor customization for special functions 
possible

We now have a passing game
How to develop plays for a passing game?
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Big Picture CMP IssuesBig Picture CMP Issues

What should the microarchitecture for a CMP 
be?

Types of cores
Memory hierarchies
Inter-core communication

What will be running on the CMP?
No free ride for programmers
But price of ride can’t be high
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Roadmap for CMP ExpectationsRoadmap for CMP Expectations

Summary of traditional parallel processing
Revisiting traditional barriers and overheads 
to parallel processing
Expectations for CMP applications and 
workloads
CMP microarchitectures
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Multiprocessor ArchitectureMultiprocessor Architecture

Take state-of-the-art uniprocessor
Connect several together with a suitable 
network 

Have to live with defined interfaces
Expend hardware to provide cache coherence 
and streamline inter-node communication

Have to live with defined interfaces
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Software ResponsibilitiesSoftware Responsibilities

Reason about parallelism, execution times 
and overheads

This is hard
Use synchronization to ease reasoning

Parallel trends towards serial with the use of 
synchronization 

Very difficult to parallelize transparently 
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Net ResultNet Result

Difficult to get parallelism speedup
Computation is serialized
Inter-node communication latencies 
exacerbate problem

Multiprocessors rarely used for parallel 
execution
Typical use: improve throughput
This will have to change

Will need to rethink “parallelization”
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Rethinking ParallelizationRethinking Parallelization

Speculative multithreading
Speculation to overcoming other 
performance barriers
Revisiting computation models for 
parallelization
How will parallelization be achieved?
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Speculative MultithreadingSpeculative Multithreading

Speculatively parallelize an application
Use speculation to overcome ambiguous 
dependences
Use hardware support to recover from mis-
speculation 

E.g., multiscalar
Use hardware to overcome software barrier to 
parallelization
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Overcoming Barriers: Memory ModelsOvercoming Barriers: Memory Models

Weak models proposed to overcome 
performance limitations of SC
Speculation used to overcome “maybe”
dependences
Series of papers showing SC can achieve 
performance of weak models
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ImplicationsImplications

Strong memory models not necessarily low 
performance
Programmer does not have to reason about 
weak models
More likely to have parallel programs written



26

Overcoming Barriers: SynchronizationOvercoming Barriers: Synchronization

Synchronization to avoid “maybe”
dependences

Causes serialization
Speculate to overcome serialization
Recent work on techniques to dynamically 
elide synchronization constructs
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ImplicationsImplications

Programmer can make liberal use of 
synchronization to ease programming
Little performance impact of synchronization
More likely to have parallel programs written
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Revisiting Parallelization ModelsRevisiting Parallelization Models

Transactions
simplify writing of parallel code
very high overhead to implement semantics in 
software

Hardware support for transactions will exist
Similar to hardware for out-of-band speculation
Speculative multithreading is ordered transactions
No software overhead to implement semantics

More applications likely to be written with 
transactions
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Other Models: Example 1Other Models: Example 1
for (i=0; i<CHUNKS; i++) {
…
for (j=0; j<CHUNK_SIZE; j++) {
…
random_text[i][j] = ran()*256;
…

}
…

}
hi = seedi/_Q_QUOTIENT;

lo = seedi%_Q_QUOTIENT;

T = _A_MULTIPLIER*lo-_R_REMAINDER*hi;

if (T > 0) 

seedi = T; 

else

seedi = T + _M_MODULUS;

return ( (float) seedi / _M_MODULUS);

))

(164.gzip:spec.c)(164.gzip:spec.c)
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Example 1Example 1

… ran () …

Fn ran ()

… ran () …

Fn ran ()

… ran () …

Fn ran ()

… ran () …
Fn ran ()

Fn ran ()

… ran () …

Fn ran ()

Fn ran ()

… ran () …

…
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Other Models: Example 2Other Models: Example 2
… route_net (…) {
…
for (…)
add_to_heap()
…
get_heap_head()
…

}

add_to_heap () {

alloc ()
insert element
compute cost

heapify () 
}

get_heap_head () {

return top
fix up heap ()

}

alloc (size)

lock memheap
scan memheap 

full to empty
if free

obtain
unlock 

identify bin ~ size
return

(175.vpr:route.c)(175.vpr:route.c)
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route()

get_heap_head()
Lookup new adds

alloc()

alloc()

alloc()

Example 2Example 2
… route() …

get_heap_head()

alloc()

get_heap_head()

alloc()

… …

… route() …

route()

get_heap_head()
Lookup new adds

get_heap_head()
Lookup new adds

route()

alloc()

…
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Other Expectations for Future CodeOther Expectations for Future Code

Significant pressure for robust, reliable 
applications
Code will have additional functionality for 
error checking, etc.

Overhead code considered perf. barrier
Overhead code is parallelization opportunity

Successful parallelization of overhead will 
encourage even more use 
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ExampleExample--array bounds checksarray bounds checks

Add two arrays:

void add(int[] a1, int[] a2) {
for (int i = 0; i < result.length; i++) {
result[i] = a[i] + b[i];

}
}
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ExampleExample--array bounds checksarray bounds checks

Loop body
w/o checks = 12 insts
with checks = 21 insts

add   %i1, %o3, %o7
cmp   %o2, %g1
bge   .LL14
add   %i0, %o3, %o4
ld    [%l0+%lo(r)], %o1
ld    [%o1+8], %o0
add   %o1, %o3, %o5
cmp   %o2, %o0
bgeu  .LL23
add   %o3, 4, %o3
cmp   %o2, %g1
bgeu  .LL23
nop
ld    [%i1+8], %o0
cmp   %o2, %o0
bgeu  .LL23
ld    [%o4+4], %o1
ld    [%o7+4], %o0
add   %o2, 1, %o2
add   %o1, %o0, %o0
b     .LL15
st    %o0, [%o5+4]

sll   %o2, 2, %o0
cmp   %o2, %o5
add   %o0, %i1, %o4
add   %o0, %i0, %o1
add   %o0, %o7, %o3
bge   .LL12
add   %o2, 1, %o2
ld    [%o1+12], %o0
ld    [%o4+12], %o1
add   %o0, %o1, %o0
b     .LL13
st    %o0, [%o3+12]

With array-
bounds checks

No array-bounds 
checks
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sll   %o2, 2, %o0
cmp   %o2, %o5
add   %o0, %i1, %o4
add   %o0, %i0, %o1
add   %o0, %o7, %o3
bge   .LL12
add   %o2, 1, %o2
ld    [%o1+12], %o0
ld    [%o4+12], %o1
add   %o0, %o1, %o0
b     .LL13
st    %o0, [%o3+12]

sll   %o2, 2, %o0
cmp   %o2, %o5
add   %o0, %i1, %o4
add   %o0, %i0, %o1
add   %o0, %o7, %o3
bge   .LL12
add   %o2, 1, %o2
ld    [%o1+12], %o0
ld    [%o4+12], %o1
add   %o0, %o1, %o0
b     .LL13
st    %o0, [%o3+12]

add   %i1, %o3, %o7
cmp   %o2, %g1
bge   .LL14
add   %i0, %o3, %o4
ld    [%l0+%lo(r)], %o1
ld    [%o1+8], %o0
add   %o1, %o3, %o5
cmp   %o2, %o0
bgeu  .LL23
add   %o3, 4, %o3
cmp   %o2, %g1
bgeu  .LL23
nop
ld    [%i1+8], %o0
cmp   %o2, %o0
b LL23

sll   %o2, 2, %o0
cmp   %o2, %o5
add   %o0, %i1, %o4
add   %o0, %i0, %o1
add   %o0, %o7, %o3
bge   .LL12
add   %o2, 1, %o2
ld    [%o1+12], %o0
ld    [%o4+12], %o1
add   %o0, %o1, %o0
b     .LL13
st    %o0, [%o3+12]

add   %i1, %o3, %o7
cmp   %o2, %g1
bge   .LL14
add   %i0, %o3, %o4
ld    [%l0+%lo(r)], %o1
ld    [%o1+8], %o0
add   %o1, %o3, %o5
cmp   %o2, %o0
bgeu  .LL23
add   %o3, 4, %o3
cmp   %o2, %g1
bgeu  .LL23
nop
ld    [%i1+8], %o0
cmp   %o2, %o0
bgeu  .LL23
ld    [%o4+4], %o1
ld    [%o7+4], %o0
add   %o2, 1, %o2
add   %o1, %o0, %o0
b     .LL15
st    %o0, [%o5+4]

add   %i1, %o3, %o7
cmp   %o2, %g1
bge   .LL14
add   %i0, %o3, %o4
ld    [%l0+%lo(r)], %o1
ld    [%o1+8], %o0
add   %o1, %o3, %o5
cmp   %o2, %o0
bgeu  .LL23
add   %o3, 4, %o3
cmp   %o2, %g1
bgeu  .LL23
nop
ld    [%i1+8], %o0
cmp   %o2, %o0
bgeu  .LL23
ld    [%o4+4], %o1
ld    [%o7+4], %o0
add   %o2, 1, %o2
add   %o1, %o0, %o0
b     .LL15
st    %o0, [%o5+4]

Divide program into tasks
Execute checking code in 
parallel with task
Checking code commits or 
aborts task computation
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Other software requirementsOther software requirements

Robust, error-tolerant software will be 
needed to work on error-prone 
hardware

Likely abundant source of parallelism
Need to figure out how to do this
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Vehicle for ParallelizationVehicle for Parallelization

Tradition: automatic or manual parallelization 
of user-level code

Too much code to target
Too difficult

Successful vehicle for parallelization will 
target code selectively
OS and libraries

Written to facilitate parallel execution
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Impact of ParallelizationImpact of Parallelization

Expect different characteristics for code on 
each core
More reliance on inter-core parallelism
Less reliance on intra-core parallelism
May have specialized cores



40

MicroarchitecturalMicroarchitectural ImplicationsImplications

Processor Cores
Skinny, less complex
Perhaps specialized

Memory structures (i-caches, TLBs, d-
caches)

Significant sharing possible
Low-overhead communication possible
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MicroarchitecturalMicroarchitectural ImplicationsImplications

Novel Coherence Techniques (e.g., separate 
performance from correctness

Token coherence
Coherence decoupling

Pressure on non-core techniques to tolerate 
longer latencies
• Helper threads, pre-execution
• Other novel memory hierarchy techniques
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MicroarchitecturalMicroarchitectural ImplicationsImplications

• Significant increase in bandwidth demand
Use on-chip resources to attenuate off-chip 
bandwidth demand
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SummarySummary

It’s a whole new ball game!
New opportunities for innovation in MPs
New opportunities for parallelizing 
applications
Expect little resemblance between MPs today 
and CMPs in 15 years
We need to invent and define differences


