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Goal: 1TIPS by 2010
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How do you get there?




Technology Scaling

GATE source X ' DRAIN

SOURCE DRAIN
1:101))%
Dimensions scale Doubles transistor
down by 30% density
Oxide thickness Faster transistor,
scales down higher performance
Vdd & Vt scaling Lower active power

Scaling will continue, but with challenges!




Technology Outlook

High Volume 2012 | 2014 | 2016 | 2018
Manufacturing

Technology Node 22 16 1 8
(nm)

Integration 32 64 | 128 | 256
Capacity (BT)

Delay = CVI ly scaling will slow down
scaling

Energy/Logic Op gy scaling will slow'down
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Bulk Planar CMOS
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Low Probability
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The Leakage(s)...
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Projected Power (unconstrained)
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Active and Leakage power will become prohibitive




Product Cost Pressure
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Shrinking ASP, and shrinking $ budget for power




Must Fit in Power Envelope
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Between Now and Then—

e Move away from Frequency alone to
deliver performance

e More on-die memory

e Multi-everywhere
—Multi-threading
—Chip level multi-processing

e Throughput oriented designs

e Valued performance by higher level of
integration

—Monolithic & Polylithic
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Leakage Solutions

Planar Transistor
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Active Power Reduction
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Leakage Control

Body Bias Stack Effect Sleep Transistor
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Optimum Frequency
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uwArchitecture Techniques
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Special Purpose Hardware

TCP/IP Offload Engine
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Special purpose HW and extreme integration
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Sources of Variations
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Impact of Static Variations
Today...
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Adaptive Body Bias--Experiment

Technology 150nm CMOS
Number of 21
subsites per die

] 0.5V FBB to
Body bias range | ;s\ reB
Bias resolution 32 mV

R

1.6 X 0.24 mm, 21 sites per die
150nm CMOS

Die frequency: Min(F,..F,,)

Die power: Sum(P,..P,,)
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Adaptive Body Bias--Results

too ABB
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Circuit Design Tradeoffs

2 B power 2
[ ] target
1.5
frequency
L probability 1
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Transistor size Low-Vt usage

Higher probabillity of target frequency with:
1. Larger transistor sizes
2. Higher Low-Vt usage

But with power penalty
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Impact of Critical Paths
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Impact of Logic Depth
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uArchitecture Tradeoffs

1.5 1.5
1 (
02 I Il frequency 0.5 I
large small frequency less more
Logic depth probability # uArch critical paths

Higher target frequency with:

1. Shallow logic depth

2. Larger number of critical paths
But with lower probability
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Variation-tolerant Design

2 & power
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Probabilistic Design
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Shift in Design Paradigm

e Multi-variable design optimization for:
— Yield and bin splits
— Parameter variations
— Active and leakage power

— Performance
Today: Tomorrow:
Local Optimization Global Optimization

Single Variable Multi-variate
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Today’s Freelance Layout

No layout restrictions
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Transistor Orientation Restrictions
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Today’s Unrestricted
Routing
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Future Metal Restrictions
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Maximizing Transistor Density
Dense layout causes hot-spots

Today’s Metric



Tomorrow’s Metric:
Optimizing Transistor & Power Density

Balanced Design |
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Implications to Design

e Design fabric will be Regular

e Will look like Sea-of-fransistors
interconnected with regular
interconnect fabric

e Shift in the design efficiency metric

— From Transistor Density to Balanced
Design
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Technology Outlook

High Volume
Manufacturing

Technology Node
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Reliability
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Implications to Reliability

e Extreme variations (Static & Dynamic)
will result in unreliable components

e Impossible to design reliable system
as we know today
—Transient errors (Soft Errors)
—Gradual errors (Variations)
—Time dependent (Degradation)

Reliable systems with unreliable components
—Resilient uArchitectures
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Implications to Test

e One-time-factory testing will be out

e Burn-in to catch chip infant-mortality
will not be practical

e Test HW will be part of the design

e Dynamically self-test, detect errors,
reconfigure, & adapt
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In a Nut-shell...

-y 3ere 3ere 100 BT integration capacity
* 20 BT unusable (variations)

= 100 ..
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* Billionk
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Yet, deliver high performance in the power &
cost envelope
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Summary (of Challenges)

e Near term:
— Optimum frequency & pArchitecture
— Lots of memory & Multi—everywhere
— Valued performance with higher integration

e Paradigm shift:

— From deterministic to probabilistic design, with
multi-variate optimization

— Evolution of regular design fabric
e Long term:

— Reliable systems with unreliable components
— Dynamic self-test, detect, reconfigure, & adapt
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