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Abstract

\ector processors often use a cache to exploit temporal
locality and reduce memory bandwidth demands, but then
require expensive logic to track large numbers of outstand-
ing cache misses to sustain peak bandwidth from memory.
We present refill/access decoupling, which augments the vec-
tor processor with a Vector Refill Unit (VRU) to quickly
pre-execute vector memory commands and issue any needed
cache line refills ahead of regular execution. The VRU re-
duces costs by eliminating much of the outstanding miss state
required in traditional vector architectures and by using the
cache itself as a cost-effective prefetch buffer. We also intro-
duce vector segment accesses, a new class of vector mem-
ory instructions that efficiently encode two-dimensional ac-
cess patterns. Segments reduce address bandwidth demands
and enable more efficient refill/access decoupling by increas-
ing the information contained in each vector memory com-
mand. Our results show that refill/access decoupling is able
to achieve better performance with less resources than more
traditional decoupling methods. Even with a small cache and
memory latencies as long as 800 cycles, refill/access decou-
pling can sustain several kilobytes of in-flight data with min-
imal access management state and no need for expensive re-
served element buffering.

1. Introduction

with significant reuse, it is important that the cache not im-
pede the flow of data from main memory. Existing non-
blocking vector cache designs are complex since they must
track all primary misses and merge secondary misses using re-
play queues [1, 11]. This complexity also pervades the vector
unititself, as element storage must be reserved for all pending
data accesses in either vector registers [10, 18] or a decoupled
load data queue [9].

In this paper, we introduoeector refill/access decoupling,
which is a simple and inexpensive mechanism to sustain high
memory bandwidths in a cached vector machine. A scalar
unit runs ahead queuing compactly encoded instructions for
the vector units, and a vector refill unit quickly pre-executes
vector memory instructions to detect which of the lines they
will touch are not in cache and should be prefetched. This
exact non-speculative hardware prefetch tries to ensure that
when the vector memory instruction is eventually executed,
it will find data already in cache. The cache can be simpler
because we do not need to track and merge large numbers
of pending misses. The vector unit is also simpler as less
buffering is needed for pending element accesses. Vector re-
fill/access decoupling is a microarchitectural technique that is
invisible to software, and so can be used with any existing
vector architecture.

We also propose nevector segment memory instructions,
which encode common two-dimensional vector access pat-
terns such as array-of-structures and loop raking. Vector seg-

Abundant data parallelism is found in a wide range ofment instructions improve performance by converting some
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important compute-intensive applications, from scientific sustrided accesses into contiguous bursts, and improve the effi-
percomputing to mobile media processing. Vector architecsiency of refill/access decoupling by reducing the number of
tures [23] exploit this data parallelism by arraying multiplecache tag probes required by the refill engine.
clusters of functional units and register files to provide huge We describe an implementation of these techniques within
computational throughput at low power and low cost. Memthe context of the SCALE vector-thread processor [19] and
ory bandwidth is much more expensive to provide, and corprovide an evaluation over a range of scientific and embedded
sequently often limits application performance. kernels. Our results show an improvement in performance
Earlier vector supercomputers [23] relied on interleavednd a dramatic reduction in the hardware resources required
SRAM memory banks to provide high bandwidth at moderatéo sustain high throughput in long latency memory systems.
latency, but modern vector supercomputers[6, 17] now imple-

ment main memory with the same commodity DRAM part . )
as other sectors of the computing industry, for improved cos?,' Memory Bandwidth-Delay Products

power, and density. As with conventional scalar processors, The pandwidth-del ay product for a memory system is the
designers of all classes of vector machine, from vector supegea,x memory bandwidtt, in bytes per processor cycle mul-
computers [6] to vector microprocessors [8], are motivated tqyjieq by the round-trip access latendy,in processor cycles.
add vector data caches to improve the effective bandwidth ang saturate a given memory system, a processor must support
latency of a DRAM main memory. _ atleas{ B/b) x L independeni-byte elements in flight simul-

_ For vector codes with temporal locality, caches can proganeoysly. The relative latency of DRAM has been growing,
vide a significant boost in throughput and a reduction in thg e at the same time DRAM bandwidth has been rapidly
energy consumed for off-chip accesses. But, even for codgsnroving through advances such as pipelined accesses, mul-

“This work was partly funded by NSF CAREER Award CCR-00933541ple interleaved banks, and high-speed double-data-rate in-
and by the Cambridge-MIT Institute. terfaces. These trends combine to yield large and growing
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bandwidth-delay products. For example, a current Pentiunbbandwidth-delay memory system. The goals of a prefetch-
4 desktop has around two bytes per processor cycle of maiing scheme are to fetch only the required data, to do so before
memory bandwidth with around 400 cycles of latency, reprethe processor requires the data, and to not evict useful data
senting around 200 independent 4-byte elements. A Cray Xtom the cache. In this section, we introduce the refill/access
vector unit has around 32 bytes per cycle of global memorgecoupling scheme and describe how it achieves these goals.
bandwidth with up to 800 cycles of latency across alarge mul- Figure 1 shows our baseline system, a cached decoupled
tiprocessor machine, representing around 1,600 independesictor machine (DVM) broadly similar to previous decou-
8-byte words [6]. pled vector architectures [9, 25]. DVM includes three com-

Each in-flight memory request has an associated hardwapenents: main memory, a non-blocking cache, and a decou-
cost. Theaccess management state is the information re- pled vector processor. In this paper, we treat main mem-
quired to track an in-flight access, and tleserved element  ory as a simple pipeline with variable bandwidth and latency.
data buffering is the storage space into which the memoryThe non-blocking cache includes a tag array, data array, and
system will write returned data. In practice, it is impossiblemiss status handling registers (MSHRs). The decoupled vec-
to stall a deeply pipelined memory system, and so elemetdr processor contains a control processor (CP), vector execu-
buffering must be reserved at request initiation time. The cosion unit (VEU), vector load unit (VLU), and vector store unit
of supporting full memory throughput grows linearly with the (VSU). A decoupled vector machine with refill/access decou-
bandwidth-delay product, and it is often this control overheagling (DVMR) extends DVM with a vector refill unit (VRU).
rather than raw memory bandwidth that limits memory sys-
tem performance. _ 3.1. Non-Blocking Cache

Vector machines are successful at saturating large
bandwidth-delay product memory systems because they ex- The non-blocking cache shown in Figure 1 is similar to
ploit structured memory access patterns, groups of indepen- other non-blocking caches found both in scalar [20] and vec-
dent memory accesses whose addresses form a simple gat-machines [1, 11]. The cache supports wilmary misses
tern and therefore are known well in advance. Unit-stride anéndsecondary misses. A primary miss is the first miss to a
strided vector memory instructions compactly encode hursache line and causes a refill request to be sent to main mem-
dreds of individual element accesses in a single vector irpry, while secondary misses are accesses which miss in the
struction [17, 23], and help amortize the cost of access magache but are for the same cache line as an earlier primary
agement state across multiple elements. miss. Misses are tracked in the MSHR usjrgmary miss

At first, it may seem that a cache also exploits structuretigs andreplay queues. Primary miss tags hold the address
access patterns by fetching full cache lines (and thus mamyf an in-flight refill request and are searched on every miss
elements) for each request, and so a large bandwidth-deltyy determine if it is a secondary miss. A primary miss al-
memory system can be saturated by only tracking a relativelpcates a new primary miss tag to hold the address, issues a
small number of outstanding cache line misses. Althougtefill request, performs an eviction if needed, and adds a new
each cache miss brings in many data elements, the procesggplay queue entry to a linked list next to the primary miss
cannot issue the request that will generateixemiss untilit  tag. Replay queue entries contain information about the ac-
has issued all preceding requests. Ifthese intervening requeséss including the corresponding cache line offset, the byte
access cache lines that are still in flight, the requests must isédth, the destination register for loads, and pending data for
buffered up until the line returns, and this buffering growsstores. A secondary miss adds a new replay queue entry to
with the bandwidth-delay product. Any request which missethe appropriate replay queue, but does not send an additional
in the cache hatsvice the usual reserved element data storageefill request to main memory.
a register is reserved in the processor itself plus buffering is
reserved in the cache. 3.2. Basic Decoupled Vector Processor

Data caches amplify memory bandwidth, and in doing so
they can increase theffective bandwidth-delay product. For ~ In @ decoupled vector processor the CP runs ahead and
example, consider a non-blocking cache with four times mor@ueues vector memory or compute commands for the vector
bandwidth than main memory, and an application which acinits. The VEU may include a heavily pipelined datapath or
cesses a stream of data and reuses each operand three tifiggtiple parallel execution units to exploit data level compute
The processor must now support three times the number Brallelism. The VLU provides access/execute decoupling,
outstanding elements to attain peak memory throughput. Witfthile the VSU provides store decoupling.
reuse, the bandwidth-delay product of a cached memory sys- It is useful to explain DVM by following a single vector

tem can be as large as the cache bandwidth multiplied by thead request through the system. The CP first sends a vec-
main memory latency. tor load command to the Vector-CmdQ. When it reaches the

front, the command is broken into two pieces: the address
. ; portion is sent to the VLU-CmdQ while the register writeback
3. Vector Reifill/Access Decoupling portion is sent to the VEU-CmdQ. The VLU then breaks the
An alternative to buffering processor requests after thelong vector load command into multiple smaller subblocks.
are issued is tprefetch cache data ahead of time so that the=or each subblock it reserves an entry in the vector load data
processor sees only hits. A successful prefetching schemaeue (VLDQ) and issues a cache request. On a hit, the data
can dramatically improve the cost-performance of a larges loaded from the data array into the reserved VLDQ entry.
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Figure 1: Basic decoupled vector machine (DVM). The vector pro- S eetoremaQ
cessor is made up of several units including the control processor VSU, VED, VLU CmdQs
(CP), vector execution unit (VEU), vector load unit (VLU), and vec- vLbQ
tor store unit (VSU). The non-blocking cache contains miss sta- Primary Miss Tags

tus handling registers (MSHR), a tag array, and a data array. Re-
filllaccess decoupling is enabled by adding the highlighted comp&igure 3: Queuing resources required in a DVMR. Refill/access de-
nents: a vector refill unit (VRU) and corresponding command queueoupling requires fewer resources to saturate the memory system.

The VLDQ enables the VLU to run ahead performing manyahead to allow the VLU to always hit in the cache. A refill
memory requests while the VEU trails behind and moves dat&quest only brings data into the cache, and as such it needs
in FIFO order into the architecturally visible vector registersa primary miss tag but no replay queue entry. It also does
The VLDQ acts as a small memory reorder buffer since renot need to provide any associated reserved element buffer-
guests can return from the memory system out-of-order: hiigig in the processor, and refill requests which hit in cache due
may return while an earlier miss is still outstanding. The VSUo reuse in the load stream are ignored. In this paper we as-
trails behind both the VLU and VEU and writes results to thesume that stores are non-allocating and thus the VRU need
memory system. not process vector store commands.

Decoupling is enabled by queues which buffer data and Figyre 3 illustrates the associated resource requirements
control information for the trailing units to allow the leading ¢or 5 decoupled vector machine with refill/access decoupling
units to run ahead. Figure 2 illustrates the resource requir@DVMR)_ The VRU is able to run ahead with no need for
ments for DVM. Th_e distance that the CP may run ahead il%play queues. The VLU runs further behind the CP com-
detern_1|ned by the size of the various vectorc_ommand qUeU&Sared to the basic decoupled vector machine shown in Fig-
The distance that the VLU may run ahead is constrained Qyre 2, and so the Vector-CmdQ must be larger. However, since
the VEU-CmdQ, VSU-CmdQ, VLDQ, replay queues, ante VLU accesses are typically hits the distance between the
primary miss tags. The key observation is that to tolerate iny| y and VEU is shorter and the VLDQ is smaller. With re-
creasing memory latencies these resources must all be pgyaccess decoupling, the only resources that must grow to
portional to the_memory_ bandwidth-delay product and thU_?oIerate an increasing memory latency are the Vector-CmdQ
can become quite large in modern memory systems. In thigyq the number of primary miss tags. This scaling is very ef-
system the VLDQ is the reserved data element state, whilgjent since the Vector-CmdQ holds vector commands which
the replay queues and the primary miss tags are the acceggh compactly encode many element operations and the pri-
management state required to support the in-flight memonyary miss tags must only track non-redundant cache line re-

requests. quests. The only reserved element buffering involved in scal-
] ) ing refill/access decoupling is the efficient storage provided
3.3. Vector Refill Unit by the cache itself.

We enable refill/laccess decoupling by extending a basic A DVMR implementation will need to carefully manage
decoupled vector machine with a vector refill unit (VRU). Thethe relative steady-state rates of the VLU and VRU. If the
VRU and associated VRU-CmdQ are shown highlighted i’vVRU is able to run too far ahead it will start to evict lines
Figure 1. The VRU receives the same commands as the VLWhich the VLU has yet to even access, and if the VLU can
and it runs ahead of the VLU issuing refill requests for theutpace the VRU then the refill/access decoupling will be in-
associated cache-lines. The primary cost of the VRU is an aéffective. In addition to the rates between the two units, an
ditional address generator. Ideally, the VRU runs sufficientlymplementation must also ensure that the temporal distance
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between the two units is large enough to cover the memomgpecifier, and a scalar base address register specifier. The in-
latency. Throttling the VLU and/or the VRU can help con-struction writes each element of each segment into consec-
strain these rates and distances to enable smoother operatiotive vector registers starting with the base destination vec-
One disadvantage of refill/access decoupling is an increasar register. In this example, the red values would be loaded
in cache request bandwidth: the VRU first probes the cache toto vr 1, the green values inter 2, and the blue values into
generate a refill and then the VLU accesses the cache to acwr-3. The segment length is therefore limited by the number
ally retrieve the data. This overhead is usually low since thef vector registers. The basic vector segment concept can be
VRU must only probe the cache once per cache line. Anoth@xtended to include segments which are offset at a constant
important concern with refill/access decoupling is support fostride enabling strided vector segment accesses. Traditional
unstructured load accesses (i.e. indexed vector loads). Limtrided accesses can then be reduced both in the vector ISA
ited replay queuing is still necessary to provide these withnd the implementation to strided segment accesses with a
some degree of access/execute decoupling. segment length of one.
Segment accesses are useful for more than just array-of-
4. Vector Segment Memory Accesses structures access patterns; they are appropriate any time a pro-
I . grammer needs to move consecutive elements in memory into
Vector unit-stride accesses move consecutive elements dfifferent vector registers. Segments can be used to efficiently
memory into consecutive elements in a single vector regigccess sub-matrices in a larger matrix or to implement vector
ter. Although these one-dimensional unit-stride access pabop-raking.
terns are very common, many applications also include two-

dimensional access patterns where consecutive elements_n .
memory are moved intdifferent vector registers. For ex- ** The SCALE Decoupled Vector Machine

ample, assume that an application needs to process an arrayye evaluate vector refilllaccess decoupling and vector seg-
of fixed-width structures such as an array of image pixels ghent accesses in the context of the SCALE vector-thread pro-
polygon vertices. A programmer can use multiple strided acsessor [19] shown in Figure 4. For this work, we use SCALE
cesses to load the structures into vector registers such that i€ 3 more traditional decoupled vector machine and do not
same field for all structures is in the same vector register. Thgake use of its more advanced threading features. SCALE
following sequence of vector instructions uses three strided royghly similar to the more abstract DVMR shown in Fig-
vector accesses (each with a stride of three) to load an argye 1 with several key differences: the VEU contains four
(A) of RGB pixel values into the vector registers1, vr 2, execution lanes with clustered functional units, the VLU and
andvr 3: VSU support segment accesses, and the non-blocking cache

la ri, A is divided into four banks. In this section we first describe
' : b r 2'1 3 i the SCALE decoupled vector processor and the SCALE non-
‘a’lddﬁt O blocking cache before discussing the SCALE vector refill

unit.

vibst wvr2, rl, r2
addu rl, rl, 1

vibst wvr3, ri1, r2 5.1. SCAL E Decoupled Vector Processor

In this example, the programmer has converted a two-

dimensional access pattern into multiple one-dimensional ac- The single-issue MIPS-RISC scalar control processor ex-

cess patterns. Unfortunately, these multiple strided access %utes the control code and issues commands to the vector

hide the spatial locality in the original higher-order accesi!ts. A vedtor configuration command allows the control

pattern and can cause poor performance in the memory sﬁr-ogizrs?é tzi?gr{:’j:]giﬂ]ﬁ;';nu?c;ﬁgﬁ)\; égtg?tp ett():r?sci?nc-m the
tem including increased bank conflicts, wasted address bang? q PP :

width, additional access management state, and wasted n and sends a block of compute instructions to the vector ex-
allocating store data bandwidth. Adif'ferentdatalayoutmigh?cunor.1 unit, and these may include indexed load an.d_ store
perations. Avector load or vector store command specifies

enable the programmer to use more efficient unit-stride ag tructured memory access that reads data from or writes data
cesses, but reorganizing the data layout requires additiont%oFthe vector re iste%s in the VEU. Each lane in the VEU has
overhead and is complicated by external API constraints. 9 .

We proposevector segment memory accesses as a nNew four execution clusters and provides a peak per-cycle band-
vector mechanism which more directly captures the twowidth of one load element, one store element, and four cluster
dimensional nature of many higher-order access pattern%Perat'onS' Cluster 0 executes indexed loads and stores, and
They are similar in spirit to the stream loads and stores fou Lﬂ(x)sef’gg’:gggg;ﬂgﬁ&tﬂgg?gdli‘:’]tore address queue (SAQ)
in stream processors [4, 16]. As an example, the foIIowian; P piing.

sequence of vector instructions uses a segment access to I%a mr:ee I\J/SLWL]J agi?h\érsg ;ﬁCTepJgﬁ.e;figgiggggrs Coerggg?gr %tr
an array of RGB pixel values. 9 9 9

per-lane segment address generators. The address genera-
l'a r1, A tors step through each vector command and break them into
vibseg 3, vri, rl subblocks with up to four elements. The VLU manages per-

Thevl bseg instruction has three fields: a segment lengthane VLDQs. For unit-stride commands, the VLU allocates

encoded as an immediate, a base destination vector registérDQ entries in parallel across lanes for each cache access,
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Figure 4: Microarchitecture of the SCALE decoupled vector machine. For clarity the figure omits the CP ports into the cache.

and writes the data elements into the VLDQs in parallel wheand uses CAM-tags to provide 32-way set-associativity with
the access returns. For segment commands, the VLU may &H-O replacement. The cache has 16 B load and store seg-
locate multiple VLDQ entries in each lane for each segmennent buffers for every lane/bank pair, and we expect that these
access. After the data is read from the cache, it is held in peran be efficiently implemented under the data crossbar. A pri-
lane segment buffers next to the cache banks and returneddoty arbiter decides which of the requesters can access each
each lane’s VLDQ at a rate on one element per cycle. Sindsnk; thus the maximum throughputis four requests per cycle
both VLU and indexed lane load requests share the writéf those requests go to different banks. The cache has a two-
back bus into the lane, they must arbitrate for this resourceycle hit latency. Arbitration and tag check occur in the first
The VSU sends unit-stride store data to the cache in paralleycle and data is read from or written to the data bank on the
for each access. Segment store data is written into per-lasecond cycle. Requests that miss in the cache still consume an
buffers next to the cache banks at a rate of one element penused cycle of writeback bandwidth into the corresponding
cycle, and then written into the cache using a single accessrequester.

As with most vector machines, SCALE requires software

i =~ As in the abstract non-blocking cache discussed in Sec-
memory fences to enforce ordering when there are potenugb

n 3, primary misses allocate primary miss tags and both
ﬁmary and secondary misses (from requesters other than the
VRU) require a corresponding replay queue entry. On a miss,
4 refill request and the index of a victim line (if needed) are
placed in the bank’s memory queue (MemQ). When the entry
. reaches the head of the MemQ, the bank first sends the refill
5.2. SCALE Non-Blocking Cache request to memory, then steals unused bank cycles to read the
The 32 KB non-blocking first-level unified instruction and victim and issue a memory writeback request. When a refill
data cache is comprised of four banks which each supparturns from memory it is immediately written back into the
one request of up to 16 B per cycle. The cache has 32 B linelata array and the replay queue is used to replay one primary
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head of the Vector-CmdQ until the VEU, VLU, and VSU are
idle. Importantly, this does not block the control processo
and VRU from continuing to run ahead.



or secondary miss per cycle. Since multiple banks can be reemmand’s distance count in its DistQ (see Figure 4). When-
turning load replay data or load hit data to the same requestever the VLU finishes a vector load, the VRU pops the head
on a cycle, replays must arbitrate for writeback ports througbf the DistQ and decrements its total distance count by the
the main cache arbiter. The bank blocks if the MemQ is fultount for that command. A single distance count is sufficient
or if there are no more pending tags or replay queue entriesfor programs that use the cache uniformly, but it can fail when
The SCALE cache is a write-back/no-write-allocate cache program has many accesses to a single set in the cache. As
Store data for pending store misses is held in a per-pamk  a solution, the VRU maintains per-set counts, and throttles
ing store data buffer and store replay queue entries contairbased on the maximum per-set distance. To reduce the hard-
pointers into this buffer. Secondary store misses are mergadire cost, the distance-sets that the VRU divides its counts
where possible. Non-allocating stores are held in the repldgto may be more coarse-grained than the actual cache sets.
queues while waiting to be sent to memory and are converted
to allocating stores if there is a secondary load miss to thg Evaluation
same cache line. )
Several scientific and embedded kernels with varying
5.3. SCALE Vector Refill Unit amounts and types of access parallelism were implemented
. for the SCALE vector-thread architecture. We evaluate vector
The VRU processes vector load commands and issues Wiji/access decoupling and vector segment accesses in terms
to one refill request per cycle to the cache. Since the VRt nerformance and resource utilization for three machine
does not use replay queues, the VRU is not blocke_d aCCGSSd&nﬁgurations: a basic decoupled vector machine (DVM),
the bank when there are no free replay queue entries. a decoupled vector machine with refilllaccess decoupling
The VRU has two refill modes: unit-stride and strided. 't(DVMR), and a decoupled scalar machine (DSM). We use
uses the unit-stride refill mode for unit-stride vector loads andc Al E as our DVMR design, and we disable the vector re-
segment/strided vector loads with positive strides less than thg nit to model the DVM machine. For the DSM machine,
cache line size. In this mode, the VRU calculates the numbgfe gynamically convert vector memory accesses into scalar
of cache lines in the memory footprint once when it beging|ement accesses to model an optimistic scalar processor with
processing a command, and then issues cache-line refill rgy,r |0ad-store units and enough decoupling resources to pro-
quests to cover the entire region. The hardware cost for thg,ce hundreds of in-flight memory accesses. We also evalu-
segment/strided conversion includes a comparator to detg{te throttling mechanisms and memory latency scaling for re-
mine the short stride and a small multiplier to calculate th¢jj;;access decoupling. Main memory is modeled with a sim-

refill mode, the VRU repeatedly issues a refill request to thger processor clock cycle.

cache and increments its address by the stride until it covers
the entire vector. It also issues an additional request Whenevg_r:L Benchmarks
a segment straddles a cache-line boundary.

Three important throttling techniques preventthe VLU and Table 1 lists the benchmarks used in this evaluation. All
the VRU from interfering with each other. (1) Ideally, the vector code was hand-written in assembler and linked with C
VRU runs far enough ahead so that all of the VLU accessade compiled for the MIPS control processor ugiog . Re-
hitin the cache. However, when the program is memory bandults in the table are intended to approximately indicate each
width limited, the VLU can always catch up with the VRU. benchmark’s peak performance given the processor, cache,
The VLU interference wastes cache bandwidth and miss rend memory bandwidth constraints. They are based on a
sources and can reduce overall performance. As a solutiopseudo-ideal SCALE configuration with very large decou-
the VLU is throttled to prevent it from having more than apling queues, VRU refilllaccess decoupling, and zero cycle
small number of outstanding misses. (2) The VLU has foumain memory with a peak bandwidth of 8 B/cycle. The results
address generators and can therefore process segment/strittedughout this paper are normalized to this performance.
vector loads that hit in the cache at a faster rate than the VRU. The first eight benchmarks are custom kernels chosen to
Whenever the VLU finishes a vector load command beforexercise various memory access patternszadd- wor d,
the VRU, the VRU aborts the command. (3) If the VRU isvvadd- byt e, and vvadd- cnpl x all perform vector-
not constrained, it will run ahead and use all of the primaryector additions, withvvadd- cnpl x making use of seg-
miss tags, causing the cache to block and preventing otherent accesses to read and write the interleaved complex data.
requesters from issuing cache hits. The VRU is throttled toert ex is a graphics kernel which projects 3-D vertices
reserve one or two primary miss tags for the other requesteiin. homogeneous coordinates onto a 2-D plane using four-

When a program is compute-limited, the VRU may run arelement segment accesses to load and store the veftices.
bitrarily far ahead and evict data that it has prefetched intperforms a 35-tap finite impulse response filter by multiplying
the cache before the VLU even accesses it. To avoid thigectors of input elements by successive tap coefficients while
the VRU is also throttled based on thstance that it is run-  accumulating the output elements. Successive vector-loads
ning ahead of the VLU. To track distance, the VRU countsre offset by one element such that each element is loaded
the number of cache-line requests that it makes for each ve85 times.t r anspose uses strided segment loads and unit-
tor load command (including hits). After finishing each com-stride stores to perform an out-of-place matrix transposition
mand, it increments its total distance count and enqueues that word element data. The 54812 data set size has a stride
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Benchmark Input Size Access Pattern Avg Ops/ Elements/ [Cache Mem

Name Indexed | Unit Stride Strided Segment VL Cycle Cycle Bytes/ Bytes/Cycle
Load| Store Load|Store‘ Load | Store Load | Store Total| Muls| Load| Store| Cycle| Total | Load| Store
vvadd- wor d 250k elements 2WJ1IW 64.0] 0.67] 0.00] 1.33[ 0.67] 8.00] 8.00] 5.33] 2.67
vvadd- byt e 1M elements 2B | 1B 64.0] 1.88] 0.00] 3.76] 1.88] 5.64] 6.57] 3.76] 2.81
vvadd- cnpl x 125k cmplx hums 2W[2:* [1WI[2]*]] 32.00 0.67] 0.00] 1.33] 0.67] 7.99] 8.00] 5.33] 2.67
vertex 100k 4W vertices TWIAT* |1TWI4T*|| 28.0] 9.55 3.82] 0.96| 0.96] 7.64| 7.65 3.82] 3.82
fir 500k elements 1IH] 1H 124.0] 7.36] 3.58] 3.61] 0.10] 7.42] 0.43] 0.20] 0.22
transpose400 [400x400 words 8W 1 W[8]:1600] 16.0 0.00] 0.00] 1.00] 1.00[ 8.00] 8.00] 4.00[ 4.00
transpose512 [512x512 words 8 W 1 W[8]:2048] 16.0] 0.00] 0.00] 0.96] 0.96] 7.65 7.66] 3.83] 3.83]
idct 20k 8x 8 blocks 8H | 8H TH[B[:* [IH[B[:*|| 12.0] 8.80] 1.45 0.96] 0.96] 3.86] 3.85] 1.93] 1.92
r gbyi q 320x 240 3B pixeld 1 B[3[:* IB[3[* || 28.0] 9.33] 4.00] 1.33] 1.33] 2.67] 3.91] 1.33] 2.58|
rgbcnyk 320x 240 3B pixeld 1W 1 B[3[:* 32.0] 6.80] 0.00] 1.20] 0.40] 2.80] 3.00] 1.20] 1.80
hpg 320x 240 1B pixeld 3B 1B 63.6]10.77] 3.91] 2.93] 0.98] 3.92] 2.54] 1.01] 1.54
fft 4096 points v |4H|[4H] 6H? | 4H? 31.4] 3.25 1.00] 1.50| 1.08| 5.16| 1.13| 0.44| 0.69
rotate 742x 768 bits 8B 8 B:-768] 15.5] 9.01] 0.00] 0.47] 0.47] 0.94] 7.99] 0.47] 7.52
di t her 256x256 1Bpixeld] v/ | v/ [4H | 1H [1B:254 31.3] 5.09] 0.65] 1.11] 0.27] 2.26] 0.25] 0.22] 0.03

Table 1: Benchmark characterization. TAecess Pattern columns display the types of memory access streams used by each benchmark.
The entries are of the form&{{B, H, W}[n] : S, whereN indicates the number of streams of this type, B, H, or W indicates the element
width (byte, half-word, or word)jn] indicates the segment size in elements, Snddicates the stride in bytes between successive elements

or segments. A stride of * indicates that the segments are consecutive, and a stride of '?’ indicates that the stride changes throughout the
benchmark. Thévg VL column displays the average vector length used by the benchmark. The per-cycle statistics angséodthieleal

SCALE configuration that is used as a baseline for normalization throughout this paper.

which maps columns to a single set in the cadhéct per- width amplifications of 1%, 9x, and 4.6« respectively. Sev-
forms an in-place 2-D 88 inverse discrete cosine transformeral benchmarks have higher memory bandwidth than cache
on a series of blocks using the LLM algorithm. The imple-bandwidth due to the non-allocating store policy and insuffi-
mentation first uses segment vector loads and stores to perent spatial-temporal locality for store writeback merging.
form a 1-D IDCT on the block rows, then uses unit-stride ac-

cesses to perform a 1-D IDCT on the columns. 6.2. Reserved Element Buffering
The last six benchmarks are from the EEMBC consumer, ~and AccessManagement State
telecom, and office suites.gbyi g andr gbcnyk are RGB Figure 5 presents three limit studies in which we restrict

color conversion kernels which use three-element segment aginer: (a) the reserved element buffering provided by the
cesses to efficiently load input pixelsgbyi g also uses seg- | pQs, (b) the number of primary miss tags, or (c) the num-
ment accesses to store the converted pixelsriglicmyk  per of replay queue entries. To isolate the requirements for
uses a packed word store to write its output ddtpg is @  each of these resources, all of the other decoupling queue
two dimensional gray-scale convolution over one byte pixelgjzes are set to very large values, and in each of the three stud-
with a 3x3 high-pass filter. Each output pixel is a function ofjas the other two resources are unconstrained. For these limit
nine input pixels, but the kernel is optimized to load each ingyygies, the cache uses LRU replacement, and the DVMR dis-
put pixel three times and hold intermediate input row computance throttling uses 32 distance-sets each limited to a dis-
tations in registers as it produces successive output fofMls.  tgnce of 24. Memory has a latency of 100 cycles.
is a radix-2 Fast Fourier Transform based on a decimation-in- The overall trend in Figure 5 shows that the DVMR ma-
time Cooley-Tukey algorithm. The algorithm inverts the innefchine is almost always able to achieve peak performance
loops after the first few butterfly stages to maximize vectoyith dgrastically fewer reserved element buffering and access
lengths, resulting in a complex mix of strided and Un't'St”d%anagement resources compared to the DVM and DSM ma-
accesses. The benChma_I’k performs the |n|t|a| bit-revers.al U§hinesl A” the machines must use primary miss tags to track
ing unit-stride loads and indexed storest at e turns a bi- many in-flight cache lines. However, in order to generate
nary image by 9. It uses 8 unit-stride byte loads to feedthese misses, DVM and DSM also require 10s—100s of re-
an 8-bitx8-bit block rotation in registers, and then uses &)ay queue entries and reserved element buffering registers.
strided byte stores to output the blockli t her performs  pyMR mitigates the need for these by decoupling refill re-
Floyd-Steinberg dithering which takes grey-scale byte p'Xe|§uests so that demand accesses hit in the cache.
as input and outputs a binary image. The benchmark uses ajith the 100 cycle memory latencyyadd- wor d must
strided byte access to load the inputimage and indexed loaggstain 533 B of in-flight load data to saturate its peak load
and stores to read-modify-write the bit-packed output imageyandwidth of 5.33 B/cycle (Table 1). This is equivalent to
The dithering error buffer is updated with unit-stride accessegpout 17 cache lines, and the benchmark reaches its peak per-
Table 1 shows that the kernels which operate on word dafarmance with 32 primary miss tags. DVM accesses four
drive memory at or near the limit of 8 B/cyclevadd- byt e  word elements with each cache access, and so requires two
andf i r approach the limit of 4 load elements per cycle; andeplay queue entries per primary miss tag (64 total) and 256
vertex, fir, rgbyiq, andhpg approach the limit of 4 VLDQ registers to provide reserved element buffering for
multiplies per cycle. Although input data sets were chosen tthese in-flight accesses. In stark contrast, DVMR does not
be larger than the 32 KB cache, several benchmarks are abégjuire any VLDQ reserved elements or replay queue entries
to use the cache to exploit significant temporal locality. In parto generate the memory requests. DSM issues independent
ticular,fir,di t her,andf f t have cache-to-memory band- accesses for each of the eight words in a cache line and so

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY



vvadd—-word vvadd-byte vvadd-cmplx vertex fir transpose400 transpose512

11 1 1 —— 1 1 ﬁ 1
4 7/ I
0.8 / 0.8 0.8 / 0.8 _,7 o8 08¢ o o o r0—0—008 L, =
/ - /- % B —0— ,
0.6 0.6 0.6 s 0.6 v 0.6 0.6 ... 106
/. _ I £~ 2" 1 . o Lo
/ / & / o /- e © .
0.4 0.4 0.4 A 0.4 / 0.4 0.4 04f o~
/ / 27 /d / / / >—/9-H—9—6—9*'/
/ e i oo T AN
0.2 P 0.2 g e q02 o7, 022 7 0.2 0.2 0.2
- - o .~
— 0— i 0% -~ 0 0 0 0
4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512
idct rgbyiq rgbcmyk hpg fft rotate dither
1 — 1 1 — - q : 1
/ 1 - e 1
~
0.8 / 0.8 0.8 y B 0.8 , 08 P
. 0.8 . -
7 / ] - .
0.6 / 0.6/ 0.6 7 os , 0.6 , 06f . —7.-
;0o 4 _/ : L - o
0.4 e R .v104 0.4 7/ 0ab 7 . 0.4 0.4
7 . , . .
L.y — = e
0.24 @& —+ — 0.2 02p 7 LT 02 0.2 0.2

] 0 0 [¢] 0 0 0
4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512 4 8 16 32 64 128256512

(a) VLDQ entries (reserved element buffering).
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(b) Primary miss tags (access management state).
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(c) Replay queue entries (access management state).

Figure 5: Performance scaling with increasing reserved element buffering and access management resources. In (a), the x-axis indicates th
total number of VLDQ entries across all four lanes, and in (b) and (c) the x-axis indicates the total number of primary miss tags and replay
queue entries across all four cache banks. For all plots, the y-axis indicates performance relatiyiseaadthedeal configuration whose

absolute performance is given in Table 1. DVMR is shown with solid lines, DVM with dashed lines, and DSM with dotted lines. The lines
with circle markers indicate segment vector-memory accesses converted into strided accesses.
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requires both 256 replay-queue entries and 256 reserved genhmak VR || aenetmes || e
ement buffering registers to achieve its peak performancg. 1024] 256 64| 768 100] 24| 2| 4| 8| 18] 32
However, even with these resourcesiitis still unable to saturateagg- zord 8'83 8.33 (1)'38 é.gg 1.83 8'3§ 8'83 é.go é.gg é.gg é.gg

; ; vadd-byt e 102]0.95[0.90[[0.96[ 1.00]0.48[[0.92]0.94]0.98] 0.98]0.

the memory bandwidth because, (1) each cache miss wasteg g rq—cior«—-0.0410°0410-96]l .00/ 1.00[0-32][0-63 .00/ 7,00/ .00/ 700
cycle of writeback bandwidth into the lanes, and (2) the langsertex 0.08]0.40]0.97][0.99[ 1.00] 0.44][0.80[ 1.00| 1.00] 1.00]0.99
have bank conflicts when they issue scalar loads and stor ﬂf‘f‘ 8-33 g-gg 8-82 1-88 gg; 8-% 8-2}1 8-32 8-3; ‘1)-83 é-gg
The other load memory bandwidth limited benchmarks shaferansposea00 |[0.12/1.00/0.96][ 1.00[0.99[0.30[[0.31]0.78]0.99] 1.00[1.00
similarities withvvadd- wor d in their performance Scahng_ transpose512 [[ 0.25/0.25]0.25][0.25[0.25]0.98[]1.00[1.00[1.00]1.00[1.00
, - TgbyT q 7.00[ 1.00] 1.00]| 1.00] 2.00[0.98|[ 1.00| 1.00| .00 1.00] 1.00
Thevvadd- byt e kernel makes it even more difficult for [rgbcryk 7,00/ 2.00| 2.00[[ 1.00] 1.00| £.00[[ Z.00[ .00 1.00| Z.00| .00
i i Bpg 0.190.26]0.98][ 0.19[0.99]0.46[ 0.63]0.97| 1.00[0.52]0.19
DVM and DSM to drive memory since each load access Tit 1,00/ 0.98]0.96[[ 0.97[0.98[0.85([0.94[0.97]0.97]0.97]0.97
four times less data tha_n M'_Nadd- wor d. Thus, to gener- [rotate 0.99]0.08[0.94|[0.99]0.99] 0.94]0.96]0.98| 1.00] 1.00]0.99
ate a given amount of |n_f||ght load data, they require fouldi t her 0.98[0.96]0.96][ 1.00]0.95/0.61[[0.71]0.87]0.93]0.99] 1.00

times more replay queue entries and VLDQ registers. Fur- ) o .

thermore. the wasted lane writeback bandwidth and cache a‘@_ble 2: Performance for various refill distance throttling mecha-

cess banawidth caused by misses are much more critical fB8F™MS: For each benchmark, the performance values are normalized

vvadd- byt e. DVM' K - te half of th itical 0 the best performance for that benchmark attained using any of the
ada-pyte. Scac emlsseswase al _O ecri Ica.mechanisms.

four elements per cycle lane writeback bandwidth, and so its

peak performance is only half of that for DVMR. To reach thep 8x for r gbcnyk, 3.4x for vert ex, 7.5x for r gbyi g,

peak load bandwidth, DVMR uses 16 VLDQ registers (4 peand 22< for t r anspose400. Segments also improve lo-

lane) to cover the cache hit latency without stalling the VLU cality in the store stream, and thereby alleviate the need to

Ther gbyi g andr gbcnyk benchmarks have similar char- merge independent non-allocating stores in order to optimize

acteristics torvadd- byt e since they operate on streams ofmemory bandwidth and store buffering resources.

byte elements, but their peak throughputis limited by the pro- Although DVMR always benefits from segment accesses,

cessor’'s compute resources. DVM is better off with strided accesses when reserved ele-
Refill/access decoupling can provide a huge benefit for agnent buffering resources are limited. This is because a strided

cess patterns with temporal reuse. Tipg benchmark must pattern is able to use the available VLDQ registers to generate

only sustain 1B/cycle of load bandwidth to reach its peaknore in-flight cache misses by first loading only one element

throughput, and so requires 100 B of in-flight data. Howeveiin each segment, effectively prefetching the segment before

because the benchmark reads each input byte three timéise subsequent strided accesses return to load the neighboring

DVM and DSM each require 300 reserved element bufferelements.

ing registers for the in-flight data. DVM accesses each 32B

cache line 24 times with four-element vector-loads, and th A ;

requires 72 replay queue entries to sustain the three in-flig t3' Refill Distance Throttling

cache misses; and DSM needs four times this amount. DVMR \yie next evaluate mechanisms for throttling the distance

is able to use dramatically fewer resources by prefetchinga ihe refill unit runs ahead of the VLU. Table 2 presents re-
each cache line with a single refill request and then discarding s for several throttling mechanisms at a memory latency of
the two subsequent redundant requests. 400 cycles. The first group of columns evaluate having no ex-

Refill/access decoupling can also provide a large benefilicit throttling other than the size of théector-CmdQ. With
for programs that only have occasional cache misses. Wsize of 1024, many of the benchmarks have dismal perfor-
achieve peak performancegt at e, di t her ,andf i r must mance as the VRU evicts prefetched data from the cache be-
only sustain an average load bandwidth of one cache linfere the VLU has a chance to access it. Simply reducing the
every 68, 145, and 160 cycles respectively. However, tqueue size to 64 turns out to be an effective throttling tech-
avoid stalling during the 100 cycles that it takes to servic@éique. However, doing so can also over-constrain the refill
these occasional cache misses, DVM must use on the ordengfit, as seen witlvvadd- byt e andi dct . In general, the
100 VLDQ registers as reserved storage for secondary missesmmand queue size is not a robust technique for throttling
(fir andr ot at e) orto hold hit-under-miss datdi(t her).  the refill unit since the distance that it can run ahead depends
DVMR attains high performance using drastically fewer reon both the vector-length and the percentage of queued com-
sources by generating the cache misses long before the daiands that are vector-loads.
is needed. The Total-Distance and Set-Distance-24 results in Table 2

For benchmarks which use segment vector-memory aevaluate directly throttling the distance that the refill unit is
cesses, we evaluate their effect by dynamically convertingllowed to run ahead of the VLU. These schemes use the dis-
eachn-element segment access imtgtrided vector-memory tance counting mechanism described in Section 5.3 with the
accesses. Figure 5 shows that several benchmarks rely \gector-CmdQ size set to 1024. When only one count is used to
segment vector-memory accesses to attain peak performaniimit the VRU distance to 768 cache lines (75% of the cache)
even with unlimited decoupling resources. Segments caor 100 cache lines (the memory bandwidth delay product),
improve performance over strided accesses by reducing tineost benchmarks perform very well. However, the refill unit
number of cache accesses and bank conflicts. For exampdti)l runs too far ahead fdrr anspose512 since its accesses
without segments, the number of bank conflicts increases lignd to map to a single set in the cache.
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dither with memory latency and processor frequency. Table 3 shows

1 the configuration parameters, and Figure 7a shows how per-
0.8 emmm- formance scales as the latency of the 8 B/cycle main mem-
06 = ory increases from 4 to 800 cycles. To tolerate the increas-
. [ ing memory bandwidth-delay product, only the Vector-CmdQ
02/ ___ 1y 02/ ___ |y size, the number of primary miss tags, and the distance-sets
024 48 96 192 384 768 024 48 96 192 384 768 were scaled linearly with the memory_latency._We found it un-
max distance (cache lines) max distance (cache lines) necessary to scale the number of primary miss tags per bank

. . i ) . between the 50 and 100 cycle latency configurations because
Figure 6: Cache replacement policy interaction with refill d'Stancﬁpplications tend to use these hard-partitioned cache bank re-
throttling. The refill unit uses th&et-Distance-24 throttling mecha- sources more uniformly as their number increases

nism, and the x-axis increases the maximum refill distance by vary- As sh i Ei 7 iaht of the bench k bl
ing the number of distance-sets from 1 to 32. The y-axis shows S Shown In Figureé 7a, eight or the benchmarks are able
performance relative to theseudo-ideal SCALE configuration. The t© maintain essentially full throughput as the memory la-
results are for a memory latency of 400 cycles. tency increases. This means that the amount of in-flight
data reaches each benchmark’s achievable memory band-

[ Memory latency (cycles) 4] 25 500 100 200 409 sog  width (Table 1) multiplied by 800 cycles—upto 6.25KB. The

B CS%%E Decoupled Vector Processor performance for benchmarks which lack sufficient structured

VEU/VLU U/VRU-CmdQ§ H

VLDOILDOISAQ 26 access parallellsmj( t her an_df f t ) tapers as the memory

Vector-CmdQ a8 16 37 64 129 258 latency increases beyond their latency tolerahgsg perfor-

Throtfle distance per set 24 mance drops off due to the cache’s FIFO eviction policy, and

Distance-sets 1 1] 1] 2] 4] g 16 ¢ 512 t tol te the | lat . . th
Non-Blocking Cache: 32 KB, 32-way set-assoc., FIFO replacement r ans pose : ,Ca,n notto era,e € long latencies since the

Replay queue entries 32(8) refill distance is limited to the size of one set.

Pending store buffer entries 32(8) i i i _

Primary miSs gS B A TS A0 A ZSaeASTATT) In Figure 7b, we evaluate the effect of increasing the pro

cessor clock frequency byx such that the memory latency
Table 3: Restricted configuration resource parameters with scali@sO increases byx and the bandwidth becomes 2 B/cycle.
memory latency. Per-lane and per-bank parameters are shownV¢ retain the same parameters listed in Table 3 for operat-
parentheses. ing points with equal bandwidth-delay products. The results
show that the benchmarks which were limited by memory at
Breaking the distance count into sets allows the VRU t@ B/cycle still attain the same performance, while those which
run further ahead when access patterns use the cache umere previously limited by compute or cache bandwidth im-
formly, while still not exceeding the capacity when accesgrove with the increased frequency.
patterns hit a single set. Ti&st-Distance-24 results in Ta-
ble 2 use a varying granularity of distance-sets for the bookg 5 Cache Address Bandwidth
keeping while always limiting the maximum distance in any
set to 24. With a memory latency of 400 cycles, only around The cache probes by the VRU increase energy through ad-
4-8 distance-sets are needed. ditional tag checks, although this is partially mitigated by vec-
The VRU distance throttling assumes that the cache eviéor cache accesses which amortize address bandwidth over
tion order follows its refill probe pattern, but a FIFO re-many elements. For exampiedct running on DVM with-
placement policy can violate this assumption and cause réut segments requires only 0.63 cache accesses per load ele-
filllaccess decoupling to breakdown. This occurs when a rénent due to efficient unit-stride vector accesses. Adding seg-
fill probe hits a cache line which was brought into the cach&ents reduce this to 0.19 accesses per load element. DVMR
long ago and is up for eviction soon. This is a problem fowith segments results in an increase to 0.28 accesses per load
the hpg benchmark which has distant cache line reuse as @ement, but this is still far more energy efficient than DSM
processes columns of the input image. Figure 6 shows that #¢hich requires one access for every load element).
performance initially increases as the refill unit is allowed to VRU cache probes can also impact performance by in-
run further ahead, but then falls off dramatically when it goe§reasing the number of bank conflicts. Section 6.2 illustrated
far enough to evict lines before they are reuseti.t her  that for applications with many misses, any performance im-
frequently reuses its pixel error buffers, but they are peripact due to bank conflicts is drastically outweighed by the
odically evicted from the cache, causing the VLU to get derformance benefit of refill/access decoupling. Bank con-
miss even though the corresponding refill unit probe got #icts are more of a concern for applications which always
hit. Figure 6 shows how an LRU replacement policy fixedlit in cache. Several of the benchmarks were tested with
these breakdowns in refill/access decoupling. To simplify théatasets that completely fit in cache for the DVM and DVMR
cache hardware, an approximation of LRU would likely beconfigurations. The performance overhead of DVMR ranged

sufficient. from less than 2% fovvadd- byt e,vert ex, andi dct to
approximately 10% fovvadd- wor d andt r anspose for
6.4. Memory L atency Scaling certain matrix dimensions. It is important to remember that

for applications with even a few misses, refill/access decou-
We now evaluate a DVMR configuration with reasonablepling quickly mitigates this performance overhead. Decreas-
decoupling queue sizes, and show how performance scalieg the VRU priority in the cache arbiter can also drastically
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(a) 8 B/cycle memory (b) 4x processor frequency, 2 B/cycle memory
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Figure 7: Performance scaling with increasing memory latency. The y-axis shows performance relatipsaadtiédeal SCALE configu-
ration (with 8 B/cycle memory). In (b), the processor frequency is increasédchwhile retaining the same memory system.

reduce this performance overhead, but this would decrease thny short vector accesses as it eliminates speculation, be-
effectiveness of refill/access decoupling. Aninteresting futurgins fetching at an earlier point in the stream, and preloads
research direction is to investigate adaptive priority schememly the exact data required. Also, refill/access decoupling

which adjust the VRU priority based on miss rate. can handle any number of independent streams as it does not
maintain any per-stream state. Stream buffers, however, have
7 Related Work the advantage of avoiding tag checks if the data is already in

cache whereas the VRU must probe the tags once per cache
There have been many proposals to improve performandi@e. Stream buffers can also prefetch scalar accesses whereas
of large bandwidth-delay memory systems. We describe teckefill/access decoupling only prefetches vectors.
niques for both scalar and vector machines. Perhaps the previous techniques most similar in spirit to
Superscalar processors use register renaming and out- refill/access decoupling are the various forms of scalaa-
of-order execution to overlap multiple accesses to a norfead processing. Baer and Chen [2] described a preloading
blocking cache [15]. In-flight access management state irscheme that predicts the path a program will take and the ad-
cludes the instruction window and the memory reorder queudyesses that will be accessed at each program counter value,
in addition to the cache’s primary miss tags and replay queuthen tries to preload any missing cache lines. The look-ahead
Reserved element buffering is provided by the multiported rePC is throttled to not run ahead by more than a fixed number
named register file. These structures are very expensive, apitcycles, partly to reduce cache pollution as in our decoupled
so current superscalars are typically limited to less than a hurefill/access decoupling scheme but also to limit the amount
dred elements in flight. by which instruction stream prediction can go astray. The
Scalar processors are usually augmented with variougn-ahead processor [7] and later out-of-order variants [21]
software or hardware prefetching schemes, to help saturaovide alternative implementations of the same general con-
large bandwidth-delay memory systems [30]. Effectgl-  cept, but only switch into run-ahead after a cache miss. These
war e prefetching for scalar machines requires intimate andscalar runahead schemes require complex hardware and are
implementation-specific details of the underlying memory hiless effective than vector refill/access decoupling, which re-
erarchy and memory pipeline timing, and requires compleguires no speculation and amortizes prefetch cache probes
compiler algorithms to avoid insertion of excess prefetch inover multiple elements.
structions [24]. The resulting prefetch schedules are not Decoupled architectures were initially developed to tol-
performance-portable across different microarchitectures. erate memory latency in scalar machines by separating ad-
Hardware prefetching usually falls into one of two cat-dress generation and memory access from compute opera-
egories: miss-based prefetching and runahead prefetdions [26, 27]. Decoupled architectures are able to generate
ing. Miss-based prefetching schemes, including stream large numbers of in-flight elements but require extensive re-
buffers [14, 22], attempt to predict future cache misses basegrved element buffering in the decoupling queues, and also
on past cache miss address patterns. Stream buffers are mprienary miss tags and replay queues to track pending element
complex than refill/access decoupling as they require strideccesses if a non-blocking cache is added.
predictors, and usually have separate line storage buffers to Several earlyector machines designed around existing
prevent cache pollution on prefetch mispredictions. Missscalar architectures had caches. Both the IBM 3090 [28] and
based prefetchers are only effective on longer vectors as thédye VAX vector machines [3] would prefetch lines into the
require one or more misses to detect a pattern and so arache when cache misses were encountered during a unit-
slower in starting to prefetch and waste memory bandwidtktride access, but did not prefetch past the current instruc-
on mispredictions past the end of the vector. In contrast, réion. Fu and Patel [12] extended this by adding a strided
fill/access decoupling is effective in situations where there arngrefetch for misses on strided vector operations. The Taran-
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tula design focused on providing high bandwidth to a largdreferences

level 2 cache [8]. A software vector prefetch instruction was

added (apparently because regular vector instructions could1] D. Abts, S. Scott, and D. J. Lilja. So many states, so little time:
not saturate main memory bandwidth [8]), which shares with  Verifying memory coherence in the Cray X1. IRDPS, Apr
scalar software prefetch the unfortunate side effect of expos- _ 2003. _ _ )

ing many implementation-specific details of the memory sys- [2] igh-er?lgig ?ggulg%af;ggée?sn ‘Zfrf]z(;tt!'/‘ée&c’l”égrp preloading
te_m tq software. _The Cray S.Vl adc_led a VeCt(_Jr data CaCh‘TS] D. Bhandarkar and R. Brunner.pVAX vector architecture. In
with single word lines to avoid wasting bandwidth for non ISCA-17, 1990.

unit-stride accesses, but then required hundreds of pending] S. Ciricescu et al. The reconfigurable streaming vector proces-
tags to track enough element misses to saturate the mem- sor (RSVP). I'MICRO-36, pages 141-150, Dec 2003.

ory bandwidth [5, 11]. The newer Cray X1 design employs [5] Cray. Vector and scalar data cache for a vector multiprocessor.
32byte lines to reduce address bandwidth and tag overheai6 U.S. Patent 6,665,774, Dec 2003. aunch .

and has pooled replay queues implemented with hardwar ] D. H. Brown Associates, Inc. Cray launches X1 for extreme

. . . - . supercomputing, Nov 2002.
linked lists [1]. The CODE architecture [18] is an alternative [7] j. Bundaspand gT Mudge. Improving data cache performance

implementation of vector decoupling which uses vector reg-" ~ by pre-executing instructions under a cache mis®rae. ICS,
ister renaming to provide buffer space for decoupled loads.  pages 6875, Jul 1997.

Fully out-of-order vector machines [8, 10] also use renamed[8] R. Espasa et al. Tarantula: a vector extension to the Alpha
vector registers to buffer outstanding requests. architecture. INSCA-29, 2002. _

The Imagine stream processor [16] is similar to a vector [¥] Eb%:ipgsg abnggl\géValero. Decoupled vector architectures. In
machine but adds stream Ioad_/store i_nstru_ctions, sim_ilar t_ELO] R Es;;)a’sa(,e M. Valéro, and J. E. Smith. Out-of-order vector
the vector segment load/store instructions introduced in this ~ architectures. 11MICRO-30, Dec 1997.
work. Imagine stream load/stores, however, are translatgd1] G.Faanes. A CMOS vector processor with a custom streaming
into strided accesses at the memory controller which thentries  cache. IrProc. Hot Chips 10, Aug 1998. _
to dynamically reaggregate these into unit-stride bursts for thE-2] J- W. C. Fuand J. H. Patel. Data prefetching in multiprocessor
DRAM. As with earlier vector supercomputers [29], Imagine ., Vector cache memories. ISCA-18, May 1991.

h two-level hi hical t t ister fi &13] N. Jayasena et al. Stream register files with indexed access. In
as a two-level hierarchical vector (stream) register file, an HPCA-10, page 60, Feb 2004,

uses the extra capacity to provide reserved element buffering4) N. P. Jouppi. Improving direct-mapped cache performance
for memory traffic as well as to capture foreground register by the addition of a small fully-associative cache and prefetch
spills. A recently proposed extension [13] would allow more buffers. InISCA-17, 1990.

flexible access to the stream register file to improve its ability15] R. E. Kessler. The Alpha 21264 microprocess&EE Micro,

to exploit some forms of temporal locality, but this adds in-, . 19(2):24-36, Mar/Apr 1999.

L . 6] B. Khailany et al. Imagine: Media processing with streams.
terconnect similar to that needed for a more flexible banke@i1 |EEE Micro, Mar/Apr 2001.

cache and the programming model appears to be consideraly;] k. Kitagawa, S. Tagaya, Y. Hagihara, and Y. Kanoh. A hard-

more complex than for regular memory accesses. ware overview of SX-6 and SX-7 supercomputéEC Re-
The RSVP stream processor [4] has decoupled stream  search & Development Journal, 44(1):2—7, Jan 2003.

load/store engines which feed data directly into computation-8] C. Kozyrakis and D. Patterson. Overcoming the limitations of

rather than into intermediate vector registers. Reserved el?- conventional vector processors. |BCA-30, Jun 2003.

ment buffering is provided by FIFO buffers in the streaming!1®) 51' Pjruansggg!‘fy etal. The vector-thread architecturel J0A-

engines. To exploit some limited forms of temporal locality, 50] b 'Kroft. Lockup-free instruction fetch/prefetch cache organi-

limited stream indexing is provided to access neighboring el- ~ zation. InISCA-8, pages 81-87, May 1981.

ements in a stream. [21] O. Mutlu et al. Runahead execution: An effective alternative

to large instruction windowd.EEE Micro, Nov/Dec 2003.
[22] S.Palacharla and R. E. Kessler. Evaluating stream buffers as a

secondary cache replacementl 8A-21, pages 24-33, 1994.

We have described the considerable costs involved in sup3) 2Ri (2’)';63'?_“?;93% Ig?scray'l Computer SystemCACM,

porting large numbers of in-flight memory accesses, even fof’24] V. Santhanam, E. H. Gornish, and W.-C. Hsu. Data prefetching

vector architectures running applications that have large quan- ~ o the HP PA-8000. IIRSCA-24, pages 264273, 1997.

tities of structured memory access parallelism. Cache rg25] S. Scott. Supercomputing past, present, and future. 1CS-18
filllaccess decoupling dramatically reduces the cost of sat-  Keynote Address, Jun 2004.

urating a high-bandwidth cached memory system by preLZe] J. E. Smith. Decoupled access/execute computer architecture.

executing vector memory instructions to fetch data into th In ISCA-9, 1982.

. . - ﬁ%?] J. E. Smith. Dynamic instruction scheduling and the Astro-
cache just before it is needed, avoiding most per-eleme nautics ZS-1]EEE Computer, 22(7):21-35, 1989,

costs. We also introduced new vector segment instructiongzg] S. G. Tucker. The IBM 3090 system: An OverviewBM
which encode common two-dimensional access patterns in  Systems Journal, 25(1):4—19, 1986.

a form that improves memory performance and reduces thi@9] T. Watanabe. Architecture and performance of NEC super-
overhead of refilllaccess decoupling. Together these tech- — computer SX systenfarallel Computing, 5:247-255, 1987.
niques enable high-performance and low-cost vector memoE?O] S. P. V. Wiel and D. J. Lilja. When caches aren't enough:

systems to support the demands of modern vector architec- ?jtiggr?femhmg techniques EEE Computer, 30(7):23-30,
tures. '

8. Conclusion
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