
Compiler Optimizations for Transaction Processing Workloads  
on Itanium® Linux Systems 

 
Gerolf Hoflehner, Knud Kirkegaard, Rod Skinner,  

Daniel Lavery, Yong-fong Lee, Wei Li 

Intel® Compiler Lab 
Santa Clara, California, USA 

{gerolf.f.hoflehner, knud.j.kirkegaard, rod.skinner, daniel.m.lavery, yong-fong.lee, wei.li}@intel.com

Abstract 

This paper discusses a repertoire of well-known and 
new compiler optimizations that help produce excellent 
server application performance and investigates their 
performance contributions. These optimizations combined 
produce a 40% speed-up in on-line transaction processing 
(OLTP) performance and have been implemented in the 
Intel C/C++ Itanium compiler. In particular, the paper 
presents compiler optimizations that take advantage of the 
Itanium register stack, proposes an enhanced Linux 
preemption model and demonstrates their performance 
potential for server applications. 

1 Introduction 
This paper describes compiler optimizations that help 

produce excellent server application performance and 
investigates their performance contributions. The compiler 
optimizations combined produce a 40% speed-up in OLTP 
performance and have been implemented in the Intel C/ 
C++ Itanium compiler. The Oracle production database has 
been used to run on-line transaction processing (OLTP) 
workloads on four Itanium 2 processor systems running the 
Linux operating system.  

Intel’s compiler for the Itanium processor family 
incorporates classical compiler optimization techniques 
[12], profile-guided optimizations, and new techniques that 
have been designed specifically for the Itanium architecture 
[2][9]. However, additional work and tuning efforts in the 
compiler were necessary to tackle challenging OLTP 
workloads [4][10][13]. This paper describes compiler 
optimizations that help improve OLTP workload 
performance and analyzes their performance impact. 

A number of studies investigated the behavior of on-line 
transaction processing (OLTP) workloads. It is well known 
that a large instruction and data footprint as well as high I/O 
traffic characterize OLTP workloads [4]. Some papers 
investigate specific compiler optimizations like code layout 
optimizations and demonstrate that they are useful in 
reducing I-cache misses [13]. 

This paper takes a holistic view of the OLTP 

optimization problem. The substantial performance gains 
from the compiler are the result of utilizing a broad 
repertoire of compiler optimizations that exploit source 
code characteristics of the database code and utilize unique 
features of the Itanium architecture like the register stack 
engine (RSE) [5].   

1.1 Contributions 
This paper makes the following contributions: 
- Discussions and measurements of compiler 

optimizations that make a difference for OLTP 
workload performance on a four Itanium 2 processor  
(1.5 GHz, 6M L3 cache) system running Oracle on a 
version of the Red Hat® Linux operating system. 

- Discusses a new method to reduce the 
setjmp()/longjmp() call overhead. 

- Proposes an enhanced Linux preemption model and 
discusses its performance potential for enterprise 
applications. 

1.2 Organization of the paper 
The rest of the paper is organized as follows. Section 2 

describes compiler optimizations that helped improve 
performance of OLTP workloads. Section 3 shows the 
performance impact of the optimizations. Section 4 
discusses key learnings and section 5 has concluding 
remarks and future work.  

2 A repertoire of compiler optimizations for 
server applications 

The performance barriers for an OLTP workload on an 
Itanium 2 system are D-cache, I-cache and ITLB misses 
and the memory traffic triggered by the register stack 
engine (RSE) [5]. This paper describes an optimization to 
reduce the RSE memory traffic in section 2.1, optimizations 
that are geared towards reducing I-cache and ITLB misses 
in sections 2.2 - 2.4, and optimizations that attempt to 
improve D-cache behavior in sections 2.5 - 2.8. 

2.1 RSE traffic reduction 
The Itanium architecture has 128 integer registers r0-

r127. The upper 96 registers, r32-r127, are stacked. Each 
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procedure can have its own variable size register stack 
frame of up to 96 registers. The stacked registers within a 
procedure are referenced as architectural registers. The 
hardware maps them to a micro-architecture dependent 
number of physical registers. For example, the first 
incoming parameter register in a procedure is referenced as 
r32. But this could be any physical register from r32 to the 
number of stacked registers implemented in the micro 
architecture. With the alloc instruction [5], the code 
generator explicitly specifies a procedure’s register stack 
frame: the number of incoming parameters (i), the number 
of local (within the procedure) registers (l) and the number 
of outgoing parameters (o). The total number of registers in 
the register stack for the procedure is i+l+o <= 96.  The 
parameter registers overlap for the caller and the callee [5]. 
The register stack frame is similar to a memory stack frame, 
but is managed by the register stack engine (RSE), a 
processor state machine.  

 
 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 

Figure 1. Unoptimized register stack usage 

The Itanium® architecture allows an optimization that 
shrinks the register stack before a call site and restores it to 
its original size afterwards [14]. This technique can reduce 
the total number of registers consumed by the caller and 
callee and may result in a reduction of the overall RSE 
traffic for the application. Liveness analysis [12] determines 
the registers that are unused (or dead) at the point of the 
call. If the number of dead registers on top of the register 
stack exceeds a given threshold, the register stack is 
reduced by the amount of dead registers before the call. 

Parameter registers have to be remapped so that they stay 
on top of the resized register stack. In the examples in this 
section the parameter registers are ignored for simplicity.  

Figure 1 shows assembly snippets of a function foo() 
calling a function bar() and snapshots of the register stacks 
at 3 points in time: after the allocation of 90 stacked 
registers in foo (1: ), after the additional allocation of 50 
stacked registers in bar (2: ) and after the return from bar 
(3: ). Combined, foo() and bar() use 140 stacked registers. 
This would trigger the spilling and filling (RSE traffic) of 
44 registers by the RSE.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 
 

Figure 2. Extra alloc instructions and optimized 
register stack usage 

In contrast, Figure 2 shows how the RSE traffic can be 
avoided. Assuming liveness analysis determines that 60 
registers are unused (or “dead”) on the register stack at the 
call of bar(), the compiler inserts an alloc instruction before 
the call to bar() to shrink the register stack frame to 30 
registers (2: ). The alloc instruction after the call to bar() 
allocates a stack frame of 50 registers for bar(). The 
combined register stack at this point (3:) holds only 80 
registers. Finally, the alloc after the return from bar() re-
sizes the stack frame of foo() to 90 registers (4: ). 
Combined, foo() and bar() consume 90 registers, just like 
foo() alone, because bar() effectively reuses the stacked 
registers allocated by foo() to avoid potential RSE traffic.  

This optimization is opportunistic in the sense that the 
compiler cannot have a perfect knowledge of the state of 
the RSE when it inserts the extra alloc instructions. 
Specifically, the compiler does not know if the reduction of 
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the register stack will actually decrease the RSE traffic at 
run-time. On the other hand, the cost of the optimization is 
extra alloc instructions, which have scheduling constraints 
[5] and may contribute to an increase in code size. For an 
OLTP workload, the empirically found sweet spot was a 
threshold of 10 registers: alloc instructions are inserted only 
when at least 10 registers at the top of the register stack are 
found dead. 

Restoring the register stack to its original size after the 
call is conservative and is an untapped optimization 
opportunity: the register stack after the calls only needs to 
be large enough so that it can fit the stacked register with 
the largest register number that is defined or used on any 
path from the point after the call to any return (or exit) 
block in the function [15]. 

2.2 Code scheduling and control speculation 
OLTP workload performance is dominated by D-cache 

misses, so a small improvement in the number of scheduled 
cycles often does not help much. On the other hand, careful 
scheduling can help to reduce the impact of D-cache 
misses.  An example is the use of control speculation.  
Control speculation can be used to move loads up past 
branches. This can increase instruction-level parallelism, 
especially when instructions that depend on the load are 
also moved up.  However, when a use of a load is 
speculated, speculative cache miss stalls can occur.  A 
speculative cache miss stall occurs when a use of a 
speculative load is stalled on a cache miss and the program 
execution does not continue on to the home block of the 
load.  In this scenario the result of the load and its use is not 
needed and the processor stalls waiting for the load data 
unnecessarily.  Loads can also be moved up to cover 
additional load latency in the event of a cache miss.   

The Intel® compiler’s global code scheduler has two 
heuristics to try to minimize the effects of cache misses.  
First, it does not speculate a load unless it meets a minimum 
threshold of usefulness as determined from the profile 
information.  Speculating a load using ld.s or ld.sa requires 
the addition of a check instruction.  The threshold provides 
a simple way to tune the speculation so that the gain from 
speculation outweighs the cost of the extra instructions.  
Second, at the –O1 optimization level, the compiler’s 
heuristics are geared toward large instruction/data footprint 
applications.  At this optimization level the compiler 
speculates loads, but does not speculate the uses of 
speculative loads.  This avoids speculative cache miss 
stalls, covers additional load latency, and enables inline 
recovery code. 

Figure 3 shows an example of inline recovery code. The 
compiler must generate recovery code to handle faults and 
exceptions for speculated loads. Recovery code re-executes 
the load (non-speculatively) and any dependent instructions. 
In the general case, recovery requires a check instruction 
and a branch to a recovery code block. For cases where 

only the load is speculated, inline recovery code uses the 
ld.sa and ld.c instructions instead of ld.s and chk.s, 
removing the need for a recovery code block. If a 
fault/exception occurs at the ld.sa instruction, the advanced 
load address table (ALAT [5]) entry associated with its 
result register (rx in the example) is cleared and the ld.c is 
executed. The number of ALAT entries is limited to 32 
entries on the Itanium 2 processor. Therefore the 
implementation must be sensitive to the number of ld.sa 
lifetimes. The performance benefit is from decreased static 
and possibly dynamic code size (recovery code is expected 
to be infrequently executed). 

 
 

 
 
 
 
 
 
 
 
 

 
Figure 3. Example for inline recovery code. 

2.3 Instruction prefetching 
The Itanium® processor enables the compiler to control 

instruction prefetching by means of .few/.many completers 
on branch type instructions [5]. The completers specify how 
many bundles [5] get prefetched at the branch target. On 
Itanium, a bundle contains three instructions that can be 
executed in parallel. The machine fetches two bundles per 
cycles. 

 On our setup the heuristics that resulted in the biggest 
performance gain were to use the .many completer on all 
calls, returns and indirect branches, and on conditional 
branches when the probability – derived from feedback 
profile information – is greater than 50% that at least four 
bundles are executed at the target of the branch. The .few 
completer is used in all other cases. 

2.4 Function layout optimizations 
In this category, three optimizations contributed to 

performance: function inlining, function splitting and 
function grouping. All optimizations are effective when 
feedback-profiling information is available.  

Function inlining removes the call overhead, improves 
code locality and increases the optimization scope, but it 
may come with the cost of an increase in code size. It was 
applied inter-procedurally to the hottest files of the 
application based on feedback profiling information. 

Function grouping lays out the call graph based on the 
frequency of the call edges and reduces I-cache misses.  

With recovery code: 

  ld8.s rx=[ry] 

   … 

   … 

  chk.s rx, rec 

L: … 

 

rec: 

   ld8 rx=[ry] 

   br L;  

Inline recovery code: 

  ld8.sa rx=[ry]  

   … 

   … 

  ld.c rx=[ry] 
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This is usually done during the inter-procedural 
optimization phase in the compiler. A simple heuristic that 
moves a function with close to zero entry code frequency 
into the cold section has been applied. 

Function splitting partitions a function into hot and cold 
sections. It decreases ITLB misses by packing the hot parts 
of the functions together on fewer pages with the trade-off 
of long branches between the hot and the cold code 
sections. Similar to function grouping, a heuristic that 
moves basic blocks with close to zero frequency into the 
cold section gives a sizeable performance gain. 

2.5 Data layout optimizations 
The compiler performed two data layout optimizations. 

First, it is beneficial to move strings and constants to the 
read-only section instead of the data section. As the 
database starts multiple sessions, each process copies the 
(read/write) data section into its run-time image. Pushing 
data into the read-only section helps, because this reduces 
the size of the data sections and thus the copy overhead. 
The read-only data section is loaded only once at 
application start-up time. Thus it is better to move strings 
and constants to the read-only section instead of the data 
section. This is safe, when the application does not rely on 
modifying constants. Modifying constants is allowed by the 
K&R conventions of the C programming language [8], but 
is not allowed by ANSI C/C++ rules [1].  

Second, the compiler implemented a set of heuristics for 
sorting the local data on the memory stack based on 
frequency and size. We observed that locality improves 
when data are allocated close to the stack pointer and size is 
used as a tiebreaker. Improved locality resulted in better 
cache line utilization. Pushing hot data structures closer to 
the top of the stack (close to the frame pointer) reduced D-
cache misses in our setup. 

2.6 Setjmp()/longjmp() optimizations 
There are essentially two cases of setjmp() overhead 

reduction an Itanium® compiler can exploit.  The setjmp() 
routine uses a buffer structure to save program state, which 
can be reinstated by a longjmp() call. Reducing the state 
necessary to save will result in fewer stores and loads at 
setjmp()/longjmp() invocations. Also, on the Itanium, it is 
incorrect to assign lifetimes that cross setjmp calls to 
stacked registers, unless the compiler can compute the 
correct interferences for these lifetimes. 

2.6.1 Reduction of setjmp/longjmp() costs 

Sequences of setjmp()/longjmp() code are a common 
pattern in database applications as well as other large 
system applications like OS kernels. A call to setjmp saves 
system state in an user supplied jmp_buf structure [1]. The 
return value of the setjmp in this case is zero. A longjmp 
call reinstates the function state from this buffer and 
execution control resumes after the setjmp. The return value 

after a setjmp in this case is non-zero. There is some 
similarity to context switches, and in both cases the 
compiler provides user options to reduce the context state 
and consequently the context-switch overhead. 

Specifically, server applications (and integer code 
applications in general) don’t need many floating-point 
operations and thus have only a small demand for floating-
point registers. Because the Itanium® architecture has 128 
floating-point (fp) registers, code that uses setjmp() 
intensively will benefit from limiting the number of fp 
registers available. In the compiler the user can direct the 
compiler to use only the eight scratch fp argument registers 
f8-f15. This has the following advantages: a) it reduces the 
number of stores or loads at the setjmp() call site when the 
program state is saved to or restored from the  jmp_buf 
structure and b) it reduces the size of the memory stack of 
functions that define instances of jmp_buf structures. The 
tradeoff of restricting the number of floating-point registers 
in the compiler is a possible increase in load and stores due 
to spill code generated by the register allocator. Server 
applications are not floating-point intensive and we did not 
measure a performance loss from using only the scratch 
floating-point argument registers. 

2.6.2 Utilizing the register stack for cross setjmp() 
lifetimes 

Stacked registers are not saved in the jmp_buf structure. 
Thus, in the context of setjmp calls, lifetimes crossing 
setjmp call cannot simply be assigned stacked register on 
the Itanium architecture without special care. A lifetime is 
said to cross a setjmp() when it is  live at the setjmp call. In 
the linear (acyclic) code example of Figure 4 the lifetimes 
for V1 and V2 don’t overlap, so they do not interfere. 
Lifetime V1 is live across the setjmp call. The register 
allocator [2] in the compiler could assign the same stacked 
register r37 to both, V1 and V2. This situation is illustrated 
on the right hand side of Figure 4. Now assume that foo 
calls longjmp. After the return from the longjmp, setjmp 
returns a non-zero value, the comparison r==0 is false, but 
the value in r37, which is supposed to be V1 on this path 
(F), is wrong, because it has been overwritten earlier on the 
path (T) to foo() by the value of V2. 

The solution to this problem in the compiler is to 
explicitly model the (otherwise implicit) control flow from 
any function that might call longjmp back to the associated 
setjmp call. The compiler adds a pseudo-edge to model the 
control flow in this case. Pseudo-edges represent the 
implicit control flow necessary for correct dataflow 
analysis. They are different from other control flow edges 
because neither can instructions be moved across them nor 
can compensation code blocks be inserted on them. 

With this control flow graph enhancement, the register 
allocator can model interferences for cross setjmp() 
lifetimes like V1 correctly (Figure 5). Now V1 and V2 
interfere and cannot be assigned the same register, and in 
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particular not the same stacked register. So, when the 
compiler uses pseudo-edges to conservatively model 
interferences of cross setjmp() lifetimes, then stacked 
registers can be assigned to them. To enable this usage of 
stacked registers, the implementation of the longjmp() 
library routine must restore the register stack of the function 
containing the corresponding setjmp call. 

 

 

 

 

 

 

 

 

 

Figure 4. Lifetimes for V1 and V2 are assigned the 
same stacked register r37 

Utilizing stacked registers for cross setjmp() lifetimes 
can reduce the spills/fills in functions with high register 
pressure. It also reduces the memory stack size (fewer spill 
locations on the stack) and the code size (fewer 
load/stores). It may also eliminate the spill/fill code for the 
callee preserved integer registers (r4-r7) at function 
entries/exits, because all 96 stacked registers become 
available for cross setjmp() lifetimes. The obvious cost of 
this optimization is an increase of RSE traffic: on a scaled 
setup we measured an increase of about 40% for the RSE 
traffic, but the gains from reducing the overall memory 
traffic and the code size did by far outweigh the loss. A 
more advanced optimization for the register stack (section 
2.1) could perhaps reduce the RSE traffic increase. 

 
 
 
 
 

 
 

 

 

 

 

 

Figure 5. Adding pseudo-edges to catch cross-
setjmp() lifetime interferences 

2.7 Linux preemption model 
On Linux the default application model and the generic 

ELF ABI [11] require the compiler to generate code that 
allows for possible symbol preemption of global symbols. 
Thus the generated code must also be position independent. 
In the example in Figure 6 the definition of the function 
foo() and the global variable g used in the shared library get 
preempted by default when the shared library is loaded. As 
a consequence the call to foo in bar() actually executes the 
user code. Relatively few applications take advantage of 
these features, and support for these features can cause 
significant run-time overhead. Therefore several 
performance opportunities are available to applications that 
don't require position independent code and the default 
symbol preemption model described in the ELF ABI. For 
example, a function can be inlined when it is not 
preemptible. So in the specific example of the shared 
library code in Figure 6 it is not legal to inline the call to 
foo in bar().  We have worked on developing safe software 
convention models that rely on the ELF visibility attributes 
and user input telling the compiler that position independent 
code is not required for the main executable. 

 
 
 
 
 
 
 
 
 
 

Figure 6. Example for symbol preemption 
By default global variables must be placed in the data 

section of the object file and accessed through the global 
linkage table [7] to ensure symbol preemption. This causes 
two levels of indirection to load a global scalar variable: 

add r3 = @ltoff(data),gp 
ld8 r2 = [r3] 
ld4 r8 = [r2] 

But the user can tell the compiler and linker that a 
symbol cannot be preempted. This allows the linker to put 
the symbol into the short data section. Specifically, the ELF 
visibility protected on a global symbol says that the symbol 
will be bound at link time. Then the global symbol can be 
loaded directly from the short data section: 

add r2 = @gprel(data),gp 
ld4 r8 = [r2] 

Furthermore, it is possible that the object does not 
require position independent code generated for symbols 
that have ELF visibility other than default. This happens 
when the object will be linked with the main program, is not 
used in a shared object, and is loaded at a fixed address. 

user code: 

int g= 0; 

foo(){   
printf(“User\n”); 

printf(“g=%d\n”,g); 

} 

main() { bar(); } 

shared library code: 

int g= 2; 

foo(){   
printf(“sh_lib\n”); 

printf(“g=%d\n”,g); 

} 

bar() { foo();} 

F T F T 

          = V1   V2 =  

 

          = V2 

     foo() 

V1 =  

r=setjmp() 

r==0? 

        = r37     r37 =  

 

          = r37 

     foo() 

r37 =  

r=setjmp() 

r==0? 

F T F T 

        = V1     V2 =  

 

          = V2 

     foo() 

V1 =  

r=setjmp() 

r==0? 

        = r37     r38 =  

 

          = r38 

     foo() 

r37 =  

r=setjmp() 

r==0? 
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This can potentially avoid extra data cache misses, because 
the compiler can use the absolute symbol address and 
addressing does not need access the linkage table:  

movl r2 = ltconst(data) 
ld4 r8 = [r2] 

There are other benefits of using the ELF visibility 
attributes also. For example, calls to functions that are 
protected do not have to save and restore the gp register 
[7]. In this case, the compiler can conclude that the call 
address will be bound at link time and cannot be preempted 
The user can also mark symbols that can be guaranteed to 
be resolved to shared objects. These symbols require 
function import stub [7], which is usually inserted by the 
linker in the plt (procedure linkage table) section of the 
generated object. When the compiler is informed that the 
symbol is in a shared object, it can inline the stub, which 
improves code locality. 

2.8 Memory Ordering 
Server code usually has a significant number of volatile 

data references. The volatile qualifier is used to force loads 
and stores of the data object to stack memory [1]. The 
default model in the compiler forces ordered volatile data 
accesses, but might be too restrictive and can be relaxed. 
For ordered data accesses Itanium® has .rel/.acq completers 
for release/acquire data accesses) on load/stores [5]. 
Release data accesses guarantee that all previous data 
accesses are visible, acquire data accesses guarantee that 
they are made visible before any subsequent data accesses. 
Softening the memory ordering semantics may give 
performance benefits. Thus the compiler has an option to 
support unordered volatile data accesses. Specifically, 
under an option the .rel/.acq completers[5] will not be 
issued on referencing loads and stores of volatile data. 
However, as some memory accesses have to be ordered, the 
compiler does provide ordered load and store intrinsics. 
The intrinsics have a cost also: they do require source code 
changes and therefore, in the scenario described above, they 
do require an intimate knowledge of the source code. On 
the other hand, usually only a few source code lines have to 
be changed. 

3 Evaluation of compiler optimizations 
In a performance development environment geared 

towards measuring OLTP workloads, a scientific evaluation 
of the compiler optimizations is difficult. There is ongoing 
change in the environment: the OS version, the database 
code, the compiler and the hardware change constantly. 
Sometimes instabilities infiltrate the test system resulting in 
an unacceptable run-to-run variation of several percent. The 
results are collected on different configurations and 
changing systems. Therefore reproducing the results exactly 
may be difficult. 

Measurements were done on both small-scale cached 
OLTP setups and much larger scaled setups. Cached setups 

significantly scale down the database size so that the 
working set fits within system memory, resulting in 
negligible disk I/O. Essentially, on a cached setup an OLTP 
workload runs CPU bound and compiler optimizations 
usually have a higher impact on OLTP performance 
compared to scaled setups. Scaled setups are expensive, 
challenging to configure, have a large number of disks and 
are less amenable to compiler optimizations: a high speed-
up on a cached system does not necessarily translate into a 
high speed-up on a scaled setup. Sometimes measured gains 
on cached system simply evaporate on a scaled setup, most 
notably for improvements from code scheduling. In our 
experience, however, in most of the cases the measurement 
on a cached system was in the ballpark of what was 
measured on a scaled system. In general, the run-to-run 
variation was very low (<0.3%) for both, scaled and cached 
systems, which allowed for on-going empirical 
measurements. When instabilities have been discovered, 
measurements have been redone on a stabilized system. The 
performance numbers in this paper are from scaled runs. 
When an optimization was measured several times, the 
lowest number measured is presented. 

Profile data was collected with an instrumented 
database binary during a steady state phase of an OLTP 
workload run on a system similar to a scaled setup. Before 
feedback collection started, a short run warmed up the 
caches. 

For some optimizations this section provides additional 
performance data for contrast, for example for tests in the 
SPECint2000 benchmark suite. 

3.1 Measurement framework 
We used version 7.1 of the Intel® C/C++ compiler, Red 

Hat® Linux Enterprise Edition 2.1 and 3.0, versions of the 
Oracle® database source code and measured OLTP 
workloads on two different scaled systems, each equipped 
with four Itanium 2 processors and 32 GB of memory. The 
L3 cache size was 3M and 6M respectively. The 
corresponding cached systems used 8 GB of memory.  

All the measurements reflect each compiler optimization 
at one specific point in time. The measurements reported 
here were performed over a course of more than 12 months, 
during which intensive analysis and optimization were 
conducted. We tested one optimization at a time and 
measured its performance impact. Only optimizations that 
showed gains on a cached setup were re-evaluated on a 
scaled setup. There, Itanium performance monitors [5] were 
used to measure the effects of an optimization on D-cache, 
I-cache and the RSE traffic. 

3.2 Performance monitor data 
In Table 1 we chose a representative subset of the 

optimizations discussed in this paper. For each optimization 
the performance counter data for L1 and L3 D-cache misses 
as well as the L3 D-cache miss ratio are listed. 
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Both data and instructions reside in the L2 and L3 
cache, but the performance monitors cannot count 
instruction and data misses separately for the L2 cache. So 
L2 data are less meaningful and have not been included. 
RSE data are not included for most optimizations. In the 
table throughput is #transaction/time and is the measure for 
speed-up. The L3 Miss Ratio is measured by #read misses / 
#reads. 

The data compare a binary with an optimization enabled 
versus a binary that was compiled without the optimization. 
The RSE optimization described in section 2.1 reduced the 
RSE spills/fills by about 4%, improved the L3 miss ratio by 
more than 3% and increased throughput by 1.15%. Placing 
constants and strings in the read-only data section as 
described in section 2.5 reduces overall memory traffic and 
increased throughput by 1.64%. The setjmp() optimizations 
(section 2.6) improved the L3 miss ratio due to a smaller 
setjmp() buffer and a reduction in spills/fills respectively. 
The enhanced Linux preemption model produced the 
largest improvement: throughput is up by 8%, all cache 
miss data are down. As the data in the table show there does 
not seem to be a magic formula that relates performance 
monitor data to throughput. Also, the run-to-run variation in 
performance monitor data was higher than the run-to-run 
variation for a single workload. 

3.3 Overview of compiler optimizations speed-
ups 

The compiler optimizations for OLTP workloads are 
divided into six classes: RSE optimization, Data Layout 
(including local data sorting and read-only data section 
usage), Optimizations for setjmp() (reduction of the 
setjmp() buffer, Registerization of cross setjmp() lifetimes),  
Code Optimizations (including inline recovery code, 
function splitting, speculation for latency, selective 
instruction prefetch hints, function inlining and function 
grouping), enhanced Linux preemption model and dynamic 
feedback profiling.  

In Figure 7, on the x-axis is the optimization class, on 
the y-axis is the speed-up measured for all the optimization 
in that class. Again, the speed-up was measured as 

percentage improvement in #transactions/time (throughput) 
on a scaled setup. For example, the measured performance 
gain from the setjmp() optimizations (section 2.6) is 2.85%. 
The combined speed-up from all optimizations described in 
the previous chapter is 21.88%. In addition, enabling 
dynamic feedback profiling initially, before any other 
optimization described in this paper was turned on, did give 
a speed-up of about 20%. A hot function in database code 
might be considered cold or insignificant in a 
SPECint20000 benchmark. However, although the profile 
data is flat, there are hot paths within the functions. This 
enables compiler optimizations to be more effective in 
addition to the well-known improvements from profile-
driven function and block ordering. Combined, all compiler 
optimizations improve the throughput of OLTP workloads 
by more than 40%. 
 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 7. Speed-ups per optimization class 

3.4 Speed-up from reducing D-cache stall cycles 
Figure 8 shows the speed-ups from data access 

optimizations. The biggest impact is from enhancing the 
Linux preemption model to reduce the number of 
preemptible data and function symbols (section 2.7). The 
performance gains from using software convention models 
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Table 1.Performance monitor data  

                                                                                    Optimizations 

Metrics                     
RSE 
Optimization 

Read-Only 
Data 

Small setjmp() 
buf 

setjmp() 
registerization Linux preemption 

Throughput 1.15% 1.64% 1.08% 1.75% 8.22% 

L1DRead Miss -3.41% -2.18% 1.29% 10.91% -13.35% 

L3D Read Miss -0.91% -0.52% 1.17% -4.00% -19.38% 

L3 MissRatio -3.32% 2.38% -5.14% -2.49% -3.33% 

RSE spill -4.15%                   n/a                  n/a                     n/a                                  n/a 

RSE fill -4.04%                   n/a                   n/a                     n/a                                  n/a 
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for symbol preemption other than the Linux default model 
are from reducing the L3 D-cache misses and have two 
sources. First, a protected (non-preemptible) symbol can be 
put into the short data section and be directly accessed there 
(gp-relative addressing). Second, for protected and 
position-dependant symbols absolute addressing saves also 
one level of indirection compared to the ltoff addressing 
mode.  The software convention models we developed can 
speed-up all applications with significant global data traffic. 
On SPECint2000, 176.gcc, 186.crafty, 253.perlbmk, 
254.gap and 255.vortex gained 7%, 15%, 11%, 4% and 3% 
respectively. The enhanced Linux preemption model also 
removes most of the save/restores of the gp (global pointer, 
[7]) register before and after function calls, but this 
improvement was measured to be in the noise for OLTP 
workloads and SPECint2000 benchmarks. 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 8. Speed-ups of data access optimizations 

3.5 Speed-up from reducing D-cache stall cycles 
Registerization of cross setjmp() lifetimes reduces the 

spills/fills in functions with high register pressure. It also 
reduces the memory stack size (fewer spill locations on the 
stack) and the code size (fewer load/stores). A side effect of 
this optimization is that it in some functions it eliminates 
the spill/fill code for the callee preserved integer registers 
(r4-r7 on Itanium) at function entries/exits. On a scaled run, 
it was observed that registerization increases the RSE traffic 
by about 40%, but the overall speed-up from this 
optimization was 1.75%. 

Restricting the floating-point register usage to only 
scratch (caller-save) registers did not result in extra spill 
code, because there is not much floating-point code in the 
database source.  A smaller setjmp() buffer was enabled by 
using fewer floating-point registers (by removing the 19 
preserved floating-point register f2-f5, f16-f31 from the 
buffer), which  resulted in fewer store/load to/from the 
setjmp() buffer. 

The setjmp() optimizations combined have been 
measured to give gains between 2-5% for other database-
like applications as well. They have no impact on tests of 
SPECint2000 benchmark suite, as all the longjmp() calls 
there are cold. 

It is beneficial to move strings and constants to the read-
only section instead of the data section. As the database 
starts multiple sessions, each process copies the (read/write) 
data section into its run-time image. Pushing data into the 
read-only section helps, because this reduces the size of the 
data sections and thus the copy overhead. The read-only 
data section is loaded only once at application start-up time. 

Sorting local data based on frequency and size gave a 
small performance gain of 0.6% on a scaled setup as it 
reduced the L3 cache misses. The layout of local data close 
to the top of stack improved cache locality for the database 
application in our setup. 

3.6 Speed-up from reducing I-cache stall 
cycles and instruction latencies 

Figure 9 shows the performance speed-up from code 
optimizations that target better I-cache utilization or help 
hide load latencies.  

Figure 9. Speed-ups of code layout optimizations 

Function grouping for close to zero frequency functions 
has been measured to give a speed-up of up to 3% on a 
cached setup and never lower than 2% on a scaled setup. 

The data for function inlining on a small subset of the 
source base is also conservative in the sense that the 2% 
gain is the lowest measured on any measurement setup. 

Selective instruction prefetch hints as described in 
section 2.3 increased the throughput by more than 1%.  

Each of the above three optimizations decreased the 
number of L3 instruction references by about 10%. 

Hiding D-cache latencies by avoiding control 
speculative cache miss stalls (section 2.2) improved 
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performance by about 1%. 
Function splitting reduced ITLB [5] misses and gave a 

gain of less than 1%, but consistently more than 0.5% on 
any scaled setup.  

The 0.8% speed-up for inline recovery code is from a 
reduction in L3 cache misses.  

The total contribution from this class of optimizations is 
7.7%. Also, in this optimization class the performance gains 
measured on a cached setup were in general bigger than on 
a scaled setup.  In one particular instance, for the relaxed 
memory ordering (section 2.8) a 3.6% speed-up had been 
measured on a cached system consistently in multiple runs. 
However, this gain did not materialize in later 
measurements on a scaled setup. 

3.7 Speed-up from reducing RSE stall cycles 
On OLTP workloads we measured a performance gain 

of 1.15%, when at least 10 registers are saved on the 
register stack before a call is invoked. This gain reflects 
upon that the database code demands more stacked registers 
and has a deeper call graph than, for example, the 
benchmarks in the SPECint2000 benchmark suite [14]. 

3.8 Interactions between optimizations 
To get an idea about how well the speed-up numbers for 

the optimizations might add up, we did turn off all the 
optimizations except for dynamic feedback profiling. The 
performance difference between the two binaries was 
18.76%, about 3% below the compound throughput gain of 
21.88% for the optimizations in Figure 7. This indicates 
that there is negative interaction among the optimizations, 
which is an opportunity for more detailed analysis and 
research. 

4 Key learnings 
The analysis of compiler optimizations for OLTP 

workloads presented in this paper has yielded a number of 
interesting observations.  

First, contrary to conventional wisdom, compiler 
optimizations can make a big difference for OLTP 
workloads on both cached and scaled setups.  

Second, a large set of compiler optimizations is 
necessary to achieve excellent server application 
performance.  

Third, optimizations that target memory traffic do scale 
very well and contribute significant gains to OLTP 
workload performance. Some of these optimizations are 
supported by the compiler, but also require changes to the 
source code or user options. Specific examples for this are 
the change of the jmp_buf structure for setjmp()/longjmp() 
calls and the support of safe software convention models 
for symbol preemption on the Linux operating system. 

Fourth, dynamic feedback profiling is key to peak 
OLTP performance. A hot function in database code might 
be considered cold or insignificant in a SPECint2000 

benchmark. However, although the profile is flat, there are 
hot paths within the functions and the database code does 
benefit from function layout and block ordering. 

Fifth, some optimizations need to be tuned for memory 
intensive code. For example, in applications with a 
significant amount of D-cache misses it can be beneficial to 
speculate loads, but not to speculate the uses of a 
speculative load. This may avoid speculative miss stalls, 
cover additional load latency, and enable inline recovery 
code. 

Sixth, the Itanium® register stack is very effective for 
OLTP workloads. The RSE optimization (section 2.1, [14]) 
in its simple implementation reduced the RSE traffic by 
more than 1%. Given that the total RSE traffic for OLTP 
workloads is less than 10% even after applying the setjmp() 
optimization described in section 2.6, a 1% gain is sizeable. 
OLTP workloads are both more call intensive and have 
bigger functions with higher register pressure than the 
SPECint2000 benchmarks suite, where the RSE traffic for 
the entire suite is only about 1% on a single Itanium 2 
processor system with 6M L3 cache. 

Finally, the register stack also enables the compiler to 
registerize lifetimes that cross setjmp calls (section 2.6). 
This can reduce the memory traffic for applications rich 
with setjmp calls. In this context the compiler introduced 
pseudo-edges to explicitly model the control flow from any 
function that might call longjmp back to the associated 
setjmp call. A similar technique can also be used to 
optimize C/C++ programs that use exception handling.  

5 Concluding remarks and future work 
The paper discussed a repertoire of well-known and new 

compiler optimizations and their impact on performance for 
on-line transaction processing (OLTP) workloads on four 
Itanium 2 processor systems running Oracle on a version of 
the Red Hat Linux operating system. These optimizations 
combined produce a 40% speed-up in OLTP performance. 
The optimizations and their performance contributions have 
been analyzed in detail. Also, both changes to the source 
code and enhancements of the Linux preemption model that 
make the compiler generate better code have been 
described.  

Memory traffic continues to be the major bottleneck for 
OLTP workloads. More compiler research is needed to 
explore effective, scalable optimizations that can help 
reducing the memory traffic in large enterprise applications 
like databases. 

 The interaction among the compiler optimizations 
presented in the paper may well deserve further study. We 
also expect more performance gains from enhancing and 
tuning some of the methods discussed. 
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