
Compiler Optimizations for Transaction Processing Workloads
on Itanium® Linux Systems

Gerolf Hoflehner, Knud Kirkegaard, Rod Skinner,

Daniel Lavery, Yong-fong Lee, Wei Li

Intel® Compiler Lab
Santa Clara, California, USA

{gerolf.f.hoflehner, knud.j.kirkegaard, rod.skinner, daniel.m.lavery, yong-fong.lee, wei.li}@intel.com

Abstract

This paper discusses a repertoire of well-known and
new compiler optimizations that help produce excellent
server application performance and investigates their
performance contributions. These optimizations combined
produce a 40% speed-up in on-line transaction processing
(OLTP) performance and have been implemented in the
Intel C/C++ Itanium compiler. In particular, the paper
presents compiler optimizations that take advantage of the
Itanium register stack, proposes an enhanced Linux
preemption model and demonstrates their performance
potential for server applications.

1 Introduction
This paper describes compiler optimizations that help

produce excellent server application performance and
investigates their performance contributions. The compiler
optimizations combined produce a 40% speed-up in OLTP
performance and have been implemented in the Intel C/
C++ Itanium compiler. The Oracle production database has
been used to run on-line transaction processing (OLTP)
workloads on four Itanium 2 processor systems running the
Linux operating system.

Intel’s compiler for the Itanium processor family
incorporates classical compiler optimization techniques
[12], profile-guided optimizations, and new techniques that
have been designed specifically for the Itanium architecture
[2][9]. However, additional work and tuning efforts in the
compiler were necessary to tackle challenging OLTP
workloads [4][10][13]. This paper describes compiler
optimizations that help improve OLTP workload
performance and analyzes their performance impact.

A number of studies investigated the behavior of on-line
transaction processing (OLTP) workloads. It is well known
that a large instruction and data footprint as well as high I/O
traffic characterize OLTP workloads [4]. Some papers
investigate specific compiler optimizations like code layout
optimizations and demonstrate that they are useful in
reducing I-cache misses [13].

This paper takes a holistic view of the OLTP

optimization problem. The substantial performance gains
from the compiler are the result of utilizing a broad
repertoire of compiler optimizations that exploit source
code characteristics of the database code and utilize unique
features of the Itanium architecture like the register stack
engine (RSE) [5].

1.1 Contributions
This paper makes the following contributions:
- Discussions and measurements of compiler

optimizations that make a difference for OLTP
workload performance on a four Itanium 2 processor
(1.5 GHz, 6M L3 cache) system running Oracle on a
version of the Red Hat® Linux operating system.

- Discusses a new method to reduce the
setjmp()/longjmp() call overhead.

- Proposes an enhanced Linux preemption model and
discusses its performance potential for enterprise
applications.

1.2 Organization of the paper
The rest of the paper is organized as follows. Section 2

describes compiler optimizations that helped improve
performance of OLTP workloads. Section 3 shows the
performance impact of the optimizations. Section 4
discusses key learnings and section 5 has concluding
remarks and future work.

2 A repertoire of compiler optimizations for
server applications

The performance barriers for an OLTP workload on an
Itanium 2 system are D-cache, I-cache and ITLB misses
and the memory traffic triggered by the register stack
engine (RSE) [5]. This paper describes an optimization to
reduce the RSE memory traffic in section 2.1, optimizations
that are geared towards reducing I-cache and ITLB misses
in sections 2.2 - 2.4, and optimizations that attempt to
improve D-cache behavior in sections 2.5 - 2.8.

2.1 RSE traffic reduction
The Itanium architecture has 128 integer registers r0-

r127. The upper 96 registers, r32-r127, are stacked. Each

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

procedure can have its own variable size register stack
frame of up to 96 registers. The stacked registers within a
procedure are referenced as architectural registers. The
hardware maps them to a micro-architecture dependent
number of physical registers. For example, the first
incoming parameter register in a procedure is referenced as
r32. But this could be any physical register from r32 to the
number of stacked registers implemented in the micro
architecture. With the alloc instruction [5], the code
generator explicitly specifies a procedure’s register stack
frame: the number of incoming parameters (i), the number
of local (within the procedure) registers (l) and the number
of outgoing parameters (o). The total number of registers in
the register stack for the procedure is i+l+o <= 96. The
parameter registers overlap for the caller and the callee [5].
The register stack frame is similar to a memory stack frame,
but is managed by the register stack engine (RSE), a
processor state machine.

Figure 1. Unoptimized register stack usage

The Itanium® architecture allows an optimization that
shrinks the register stack before a call site and restores it to
its original size afterwards [14]. This technique can reduce
the total number of registers consumed by the caller and
callee and may result in a reduction of the overall RSE
traffic for the application. Liveness analysis [12] determines
the registers that are unused (or dead) at the point of the
call. If the number of dead registers on top of the register
stack exceeds a given threshold, the register stack is
reduced by the amount of dead registers before the call.

Parameter registers have to be remapped so that they stay
on top of the resized register stack. In the examples in this
section the parameter registers are ignored for simplicity.

Figure 1 shows assembly snippets of a function foo()
calling a function bar() and snapshots of the register stacks
at 3 points in time: after the allocation of 90 stacked
registers in foo (1:), after the additional allocation of 50
stacked registers in bar (2:) and after the return from bar
(3:). Combined, foo() and bar() use 140 stacked registers.
This would trigger the spilling and filling (RSE traffic) of
44 registers by the RSE.

Figure 2. Extra alloc instructions and optimized
register stack usage

In contrast, Figure 2 shows how the RSE traffic can be
avoided. Assuming liveness analysis determines that 60
registers are unused (or “dead”) on the register stack at the
call of bar(), the compiler inserts an alloc instruction before
the call to bar() to shrink the register stack frame to 30
registers (2:). The alloc instruction after the call to bar()
allocates a stack frame of 50 registers for bar(). The
combined register stack at this point (3:) holds only 80
registers. Finally, the alloc after the return from bar() re-
sizes the stack frame of foo() to 90 registers (4:).
Combined, foo() and bar() consume 90 registers, just like
foo() alone, because bar() effectively reuses the stacked
registers allocated by foo() to avoid potential RSE traffic.

This optimization is opportunistic in the sense that the
compiler cannot have a perfect knowledge of the state of
the RSE when it inserts the extra alloc instructions.
Specifically, the compiler does not know if the reduction of

9 0

3 0 3 0

5 0
9 0

0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

1 2 3 4
T im e

#T
ot

al
 S

ta
ck

ed
 R

eg
is

te
rs

foo():

alloc rx=0,90,0

1:
…

alloc rz=0,30,0

2: bar():

call bar() �alloc ry=0,50,0

 3:…

alloc rz=0,90,0 �return

4:…

9 0 9 0

5 0

9 0

0

2 0

4 0

6 0

8 0

1 0 0

1 2 0

1 4 0

1 6 0

1 2 3
T im e

#T
ot

al
 S

ta
ck

ed
 R

eg
is

te
rs

foo():

 alloc rx=0,90,0

1:

 bar():

 call bar() �alloc ry=0,50,0

 2:

 …

 alloc rz=0,90,0 �return

3:

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

the register stack will actually decrease the RSE traffic at
run-time. On the other hand, the cost of the optimization is
extra alloc instructions, which have scheduling constraints
[5] and may contribute to an increase in code size. For an
OLTP workload, the empirically found sweet spot was a
threshold of 10 registers: alloc instructions are inserted only
when at least 10 registers at the top of the register stack are
found dead.

Restoring the register stack to its original size after the
call is conservative and is an untapped optimization
opportunity: the register stack after the calls only needs to
be large enough so that it can fit the stacked register with
the largest register number that is defined or used on any
path from the point after the call to any return (or exit)
block in the function [15].

2.2 Code scheduling and control speculation
OLTP workload performance is dominated by D-cache

misses, so a small improvement in the number of scheduled
cycles often does not help much. On the other hand, careful
scheduling can help to reduce the impact of D-cache
misses. An example is the use of control speculation.
Control speculation can be used to move loads up past
branches. This can increase instruction-level parallelism,
especially when instructions that depend on the load are
also moved up. However, when a use of a load is
speculated, speculative cache miss stalls can occur. A
speculative cache miss stall occurs when a use of a
speculative load is stalled on a cache miss and the program
execution does not continue on to the home block of the
load. In this scenario the result of the load and its use is not
needed and the processor stalls waiting for the load data
unnecessarily. Loads can also be moved up to cover
additional load latency in the event of a cache miss.

The Intel® compiler’s global code scheduler has two
heuristics to try to minimize the effects of cache misses.
First, it does not speculate a load unless it meets a minimum
threshold of usefulness as determined from the profile
information. Speculating a load using ld.s or ld.sa requires
the addition of a check instruction. The threshold provides
a simple way to tune the speculation so that the gain from
speculation outweighs the cost of the extra instructions.
Second, at the –O1 optimization level, the compiler’s
heuristics are geared toward large instruction/data footprint
applications. At this optimization level the compiler
speculates loads, but does not speculate the uses of
speculative loads. This avoids speculative cache miss
stalls, covers additional load latency, and enables inline
recovery code.

Figure 3 shows an example of inline recovery code. The
compiler must generate recovery code to handle faults and
exceptions for speculated loads. Recovery code re-executes
the load (non-speculatively) and any dependent instructions.
In the general case, recovery requires a check instruction
and a branch to a recovery code block. For cases where

only the load is speculated, inline recovery code uses the
ld.sa and ld.c instructions instead of ld.s and chk.s,
removing the need for a recovery code block. If a
fault/exception occurs at the ld.sa instruction, the advanced
load address table (ALAT [5]) entry associated with its
result register (rx in the example) is cleared and the ld.c is
executed. The number of ALAT entries is limited to 32
entries on the Itanium 2 processor. Therefore the
implementation must be sensitive to the number of ld.sa
lifetimes. The performance benefit is from decreased static
and possibly dynamic code size (recovery code is expected
to be infrequently executed).

Figure 3. Example for inline recovery code.

2.3 Instruction prefetching
The Itanium® processor enables the compiler to control

instruction prefetching by means of .few/.many completers
on branch type instructions [5]. The completers specify how
many bundles [5] get prefetched at the branch target. On
Itanium, a bundle contains three instructions that can be
executed in parallel. The machine fetches two bundles per
cycles.

 On our setup the heuristics that resulted in the biggest
performance gain were to use the .many completer on all
calls, returns and indirect branches, and on conditional
branches when the probability – derived from feedback
profile information – is greater than 50% that at least four
bundles are executed at the target of the branch. The .few
completer is used in all other cases.

2.4 Function layout optimizations
In this category, three optimizations contributed to

performance: function inlining, function splitting and
function grouping. All optimizations are effective when
feedback-profiling information is available.

Function inlining removes the call overhead, improves
code locality and increases the optimization scope, but it
may come with the cost of an increase in code size. It was
applied inter-procedurally to the hottest files of the
application based on feedback profiling information.

Function grouping lays out the call graph based on the
frequency of the call edges and reduces I-cache misses.

With recovery code:

 ld8.s rx=[ry]

 …

 …

 chk.s rx, rec

L: …

rec:

 ld8 rx=[ry]

 br L;

Inline recovery code:

 ld8.sa rx=[ry]

 …

 …

 ld.c rx=[ry]

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

This is usually done during the inter-procedural
optimization phase in the compiler. A simple heuristic that
moves a function with close to zero entry code frequency
into the cold section has been applied.

Function splitting partitions a function into hot and cold
sections. It decreases ITLB misses by packing the hot parts
of the functions together on fewer pages with the trade-off
of long branches between the hot and the cold code
sections. Similar to function grouping, a heuristic that
moves basic blocks with close to zero frequency into the
cold section gives a sizeable performance gain.

2.5 Data layout optimizations
The compiler performed two data layout optimizations.

First, it is beneficial to move strings and constants to the
read-only section instead of the data section. As the
database starts multiple sessions, each process copies the
(read/write) data section into its run-time image. Pushing
data into the read-only section helps, because this reduces
the size of the data sections and thus the copy overhead.
The read-only data section is loaded only once at
application start-up time. Thus it is better to move strings
and constants to the read-only section instead of the data
section. This is safe, when the application does not rely on
modifying constants. Modifying constants is allowed by the
K&R conventions of the C programming language [8], but
is not allowed by ANSI C/C++ rules [1].

Second, the compiler implemented a set of heuristics for
sorting the local data on the memory stack based on
frequency and size. We observed that locality improves
when data are allocated close to the stack pointer and size is
used as a tiebreaker. Improved locality resulted in better
cache line utilization. Pushing hot data structures closer to
the top of the stack (close to the frame pointer) reduced D-
cache misses in our setup.

2.6 Setjmp()/longjmp() optimizations
There are essentially two cases of setjmp() overhead

reduction an Itanium® compiler can exploit. The setjmp()
routine uses a buffer structure to save program state, which
can be reinstated by a longjmp() call. Reducing the state
necessary to save will result in fewer stores and loads at
setjmp()/longjmp() invocations. Also, on the Itanium, it is
incorrect to assign lifetimes that cross setjmp calls to
stacked registers, unless the compiler can compute the
correct interferences for these lifetimes.

2.6.1 Reduction of setjmp/longjmp() costs

Sequences of setjmp()/longjmp() code are a common
pattern in database applications as well as other large
system applications like OS kernels. A call to setjmp saves
system state in an user supplied jmp_buf structure [1]. The
return value of the setjmp in this case is zero. A longjmp
call reinstates the function state from this buffer and
execution control resumes after the setjmp. The return value

after a setjmp in this case is non-zero. There is some
similarity to context switches, and in both cases the
compiler provides user options to reduce the context state
and consequently the context-switch overhead.

Specifically, server applications (and integer code
applications in general) don’t need many floating-point
operations and thus have only a small demand for floating-
point registers. Because the Itanium® architecture has 128
floating-point (fp) registers, code that uses setjmp()
intensively will benefit from limiting the number of fp
registers available. In the compiler the user can direct the
compiler to use only the eight scratch fp argument registers
f8-f15. This has the following advantages: a) it reduces the
number of stores or loads at the setjmp() call site when the
program state is saved to or restored from the jmp_buf
structure and b) it reduces the size of the memory stack of
functions that define instances of jmp_buf structures. The
tradeoff of restricting the number of floating-point registers
in the compiler is a possible increase in load and stores due
to spill code generated by the register allocator. Server
applications are not floating-point intensive and we did not
measure a performance loss from using only the scratch
floating-point argument registers.

2.6.2 Utilizing the register stack for cross setjmp()
lifetimes

Stacked registers are not saved in the jmp_buf structure.
Thus, in the context of setjmp calls, lifetimes crossing
setjmp call cannot simply be assigned stacked register on
the Itanium architecture without special care. A lifetime is
said to cross a setjmp() when it is live at the setjmp call. In
the linear (acyclic) code example of Figure 4 the lifetimes
for V1 and V2 don’t overlap, so they do not interfere.
Lifetime V1 is live across the setjmp call. The register
allocator [2] in the compiler could assign the same stacked
register r37 to both, V1 and V2. This situation is illustrated
on the right hand side of Figure 4. Now assume that foo
calls longjmp. After the return from the longjmp, setjmp
returns a non-zero value, the comparison r==0 is false, but
the value in r37, which is supposed to be V1 on this path
(F), is wrong, because it has been overwritten earlier on the
path (T) to foo() by the value of V2.

The solution to this problem in the compiler is to
explicitly model the (otherwise implicit) control flow from
any function that might call longjmp back to the associated
setjmp call. The compiler adds a pseudo-edge to model the
control flow in this case. Pseudo-edges represent the
implicit control flow necessary for correct dataflow
analysis. They are different from other control flow edges
because neither can instructions be moved across them nor
can compensation code blocks be inserted on them.

With this control flow graph enhancement, the register
allocator can model interferences for cross setjmp()
lifetimes like V1 correctly (Figure 5). Now V1 and V2
interfere and cannot be assigned the same register, and in

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

particular not the same stacked register. So, when the
compiler uses pseudo-edges to conservatively model
interferences of cross setjmp() lifetimes, then stacked
registers can be assigned to them. To enable this usage of
stacked registers, the implementation of the longjmp()
library routine must restore the register stack of the function
containing the corresponding setjmp call.

Figure 4. Lifetimes for V1 and V2 are assigned the
same stacked register r37

Utilizing stacked registers for cross setjmp() lifetimes
can reduce the spills/fills in functions with high register
pressure. It also reduces the memory stack size (fewer spill
locations on the stack) and the code size (fewer
load/stores). It may also eliminate the spill/fill code for the
callee preserved integer registers (r4-r7) at function
entries/exits, because all 96 stacked registers become
available for cross setjmp() lifetimes. The obvious cost of
this optimization is an increase of RSE traffic: on a scaled
setup we measured an increase of about 40% for the RSE
traffic, but the gains from reducing the overall memory
traffic and the code size did by far outweigh the loss. A
more advanced optimization for the register stack (section
2.1) could perhaps reduce the RSE traffic increase.

Figure 5. Adding pseudo-edges to catch cross-
setjmp() lifetime interferences

2.7 Linux preemption model
On Linux the default application model and the generic

ELF ABI [11] require the compiler to generate code that
allows for possible symbol preemption of global symbols.
Thus the generated code must also be position independent.
In the example in Figure 6 the definition of the function
foo() and the global variable g used in the shared library get
preempted by default when the shared library is loaded. As
a consequence the call to foo in bar() actually executes the
user code. Relatively few applications take advantage of
these features, and support for these features can cause
significant run-time overhead. Therefore several
performance opportunities are available to applications that
don't require position independent code and the default
symbol preemption model described in the ELF ABI. For
example, a function can be inlined when it is not
preemptible. So in the specific example of the shared
library code in Figure 6 it is not legal to inline the call to
foo in bar(). We have worked on developing safe software
convention models that rely on the ELF visibility attributes
and user input telling the compiler that position independent
code is not required for the main executable.

Figure 6. Example for symbol preemption
By default global variables must be placed in the data

section of the object file and accessed through the global
linkage table [7] to ensure symbol preemption. This causes
two levels of indirection to load a global scalar variable:

add r3 = @ltoff(data),gp
ld8 r2 = [r3]
ld4 r8 = [r2]

But the user can tell the compiler and linker that a
symbol cannot be preempted. This allows the linker to put
the symbol into the short data section. Specifically, the ELF
visibility protected on a global symbol says that the symbol
will be bound at link time. Then the global symbol can be
loaded directly from the short data section:

add r2 = @gprel(data),gp
ld4 r8 = [r2]

Furthermore, it is possible that the object does not
require position independent code generated for symbols
that have ELF visibility other than default. This happens
when the object will be linked with the main program, is not
used in a shared object, and is loaded at a fixed address.

user code:

int g= 0;

foo(){
printf(“User\n”);

printf(“g=%d\n”,g);

}

main() { bar(); }

shared library code:

int g= 2;

foo(){
printf(“sh_lib\n”);

printf(“g=%d\n”,g);

}

bar() { foo();}

F T F T

 = V1 V2 =

 = V2

 foo()

V1 =

r=setjmp()

r==0?

 = r37 r37 =

 = r37

 foo()

r37 =

r=setjmp()

r==0?

F T F T

 = V1 V2 =

 = V2

 foo()

V1 =

r=setjmp()

r==0?

 = r37 r38 =

 = r38

 foo()

r37 =

r=setjmp()

r==0?

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

This can potentially avoid extra data cache misses, because
the compiler can use the absolute symbol address and
addressing does not need access the linkage table:

movl r2 = ltconst(data)
ld4 r8 = [r2]

There are other benefits of using the ELF visibility
attributes also. For example, calls to functions that are
protected do not have to save and restore the gp register
[7]. In this case, the compiler can conclude that the call
address will be bound at link time and cannot be preempted
The user can also mark symbols that can be guaranteed to
be resolved to shared objects. These symbols require
function import stub [7], which is usually inserted by the
linker in the plt (procedure linkage table) section of the
generated object. When the compiler is informed that the
symbol is in a shared object, it can inline the stub, which
improves code locality.

2.8 Memory Ordering
Server code usually has a significant number of volatile

data references. The volatile qualifier is used to force loads
and stores of the data object to stack memory [1]. The
default model in the compiler forces ordered volatile data
accesses, but might be too restrictive and can be relaxed.
For ordered data accesses Itanium® has .rel/.acq completers
for release/acquire data accesses) on load/stores [5].
Release data accesses guarantee that all previous data
accesses are visible, acquire data accesses guarantee that
they are made visible before any subsequent data accesses.
Softening the memory ordering semantics may give
performance benefits. Thus the compiler has an option to
support unordered volatile data accesses. Specifically,
under an option the .rel/.acq completers[5] will not be
issued on referencing loads and stores of volatile data.
However, as some memory accesses have to be ordered, the
compiler does provide ordered load and store intrinsics.
The intrinsics have a cost also: they do require source code
changes and therefore, in the scenario described above, they
do require an intimate knowledge of the source code. On
the other hand, usually only a few source code lines have to
be changed.

3 Evaluation of compiler optimizations
In a performance development environment geared

towards measuring OLTP workloads, a scientific evaluation
of the compiler optimizations is difficult. There is ongoing
change in the environment: the OS version, the database
code, the compiler and the hardware change constantly.
Sometimes instabilities infiltrate the test system resulting in
an unacceptable run-to-run variation of several percent. The
results are collected on different configurations and
changing systems. Therefore reproducing the results exactly
may be difficult.

Measurements were done on both small-scale cached
OLTP setups and much larger scaled setups. Cached setups

significantly scale down the database size so that the
working set fits within system memory, resulting in
negligible disk I/O. Essentially, on a cached setup an OLTP
workload runs CPU bound and compiler optimizations
usually have a higher impact on OLTP performance
compared to scaled setups. Scaled setups are expensive,
challenging to configure, have a large number of disks and
are less amenable to compiler optimizations: a high speed-
up on a cached system does not necessarily translate into a
high speed-up on a scaled setup. Sometimes measured gains
on cached system simply evaporate on a scaled setup, most
notably for improvements from code scheduling. In our
experience, however, in most of the cases the measurement
on a cached system was in the ballpark of what was
measured on a scaled system. In general, the run-to-run
variation was very low (<0.3%) for both, scaled and cached
systems, which allowed for on-going empirical
measurements. When instabilities have been discovered,
measurements have been redone on a stabilized system. The
performance numbers in this paper are from scaled runs.
When an optimization was measured several times, the
lowest number measured is presented.

Profile data was collected with an instrumented
database binary during a steady state phase of an OLTP
workload run on a system similar to a scaled setup. Before
feedback collection started, a short run warmed up the
caches.

For some optimizations this section provides additional
performance data for contrast, for example for tests in the
SPECint2000 benchmark suite.

3.1 Measurement framework
We used version 7.1 of the Intel® C/C++ compiler, Red

Hat® Linux Enterprise Edition 2.1 and 3.0, versions of the
Oracle® database source code and measured OLTP
workloads on two different scaled systems, each equipped
with four Itanium 2 processors and 32 GB of memory. The
L3 cache size was 3M and 6M respectively. The
corresponding cached systems used 8 GB of memory.

All the measurements reflect each compiler optimization
at one specific point in time. The measurements reported
here were performed over a course of more than 12 months,
during which intensive analysis and optimization were
conducted. We tested one optimization at a time and
measured its performance impact. Only optimizations that
showed gains on a cached setup were re-evaluated on a
scaled setup. There, Itanium performance monitors [5] were
used to measure the effects of an optimization on D-cache,
I-cache and the RSE traffic.

3.2 Performance monitor data
In Table 1 we chose a representative subset of the

optimizations discussed in this paper. For each optimization
the performance counter data for L1 and L3 D-cache misses
as well as the L3 D-cache miss ratio are listed.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

Both data and instructions reside in the L2 and L3
cache, but the performance monitors cannot count
instruction and data misses separately for the L2 cache. So
L2 data are less meaningful and have not been included.
RSE data are not included for most optimizations. In the
table throughput is #transaction/time and is the measure for
speed-up. The L3 Miss Ratio is measured by #read misses /
#reads.

The data compare a binary with an optimization enabled
versus a binary that was compiled without the optimization.
The RSE optimization described in section 2.1 reduced the
RSE spills/fills by about 4%, improved the L3 miss ratio by
more than 3% and increased throughput by 1.15%. Placing
constants and strings in the read-only data section as
described in section 2.5 reduces overall memory traffic and
increased throughput by 1.64%. The setjmp() optimizations
(section 2.6) improved the L3 miss ratio due to a smaller
setjmp() buffer and a reduction in spills/fills respectively.
The enhanced Linux preemption model produced the
largest improvement: throughput is up by 8%, all cache
miss data are down. As the data in the table show there does
not seem to be a magic formula that relates performance
monitor data to throughput. Also, the run-to-run variation in
performance monitor data was higher than the run-to-run
variation for a single workload.

3.3 Overview of compiler optimizations speed-
ups

The compiler optimizations for OLTP workloads are
divided into six classes: RSE optimization, Data Layout
(including local data sorting and read-only data section
usage), Optimizations for setjmp() (reduction of the
setjmp() buffer, Registerization of cross setjmp() lifetimes),
Code Optimizations (including inline recovery code,
function splitting, speculation for latency, selective
instruction prefetch hints, function inlining and function
grouping), enhanced Linux preemption model and dynamic
feedback profiling.

In Figure 7, on the x-axis is the optimization class, on
the y-axis is the speed-up measured for all the optimization
in that class. Again, the speed-up was measured as

percentage improvement in #transactions/time (throughput)
on a scaled setup. For example, the measured performance
gain from the setjmp() optimizations (section 2.6) is 2.85%.
The combined speed-up from all optimizations described in
the previous chapter is 21.88%. In addition, enabling
dynamic feedback profiling initially, before any other
optimization described in this paper was turned on, did give
a speed-up of about 20%. A hot function in database code
might be considered cold or insignificant in a
SPECint20000 benchmark. However, although the profile
data is flat, there are hot paths within the functions. This
enables compiler optimizations to be more effective in
addition to the well-known improvements from profile-
driven function and block ordering. Combined, all compiler
optimizations improve the throughput of OLTP workloads
by more than 40%.

Figure 7. Speed-ups per optimization class

3.4 Speed-up from reducing D-cache stall cycles
Figure 8 shows the speed-ups from data access

optimizations. The biggest impact is from enhancing the
Linux preemption model to reduce the number of
preemptible data and function symbols (section 2.7). The
performance gains from using software convention models

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

RSE op
tim

iza
tio

n
Data

 La
yo

ut

Setj
mp(

) O
pti

miza
tio

ns

Cod
e O

pti
miza

tio
ns

Lin
ux

 P
re

em
pti

on

Pro
fili

ng

Tota
l

S
pe

ed
-u

p
in

 %

Table 1.Performance monitor data

 Optimizations

Metrics
RSE
Optimization

Read-Only
Data

Small setjmp()
buf

setjmp()
registerization Linux preemption

Throughput 1.15% 1.64% 1.08% 1.75% 8.22%

L1DRead Miss -3.41% -2.18% 1.29% 10.91% -13.35%

L3D Read Miss -0.91% -0.52% 1.17% -4.00% -19.38%

L3 MissRatio -3.32% 2.38% -5.14% -2.49% -3.33%

RSE spill -4.15% n/a n/a n/a n/a

RSE fill -4.04% n/a n/a n/a n/a

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

for symbol preemption other than the Linux default model
are from reducing the L3 D-cache misses and have two
sources. First, a protected (non-preemptible) symbol can be
put into the short data section and be directly accessed there
(gp-relative addressing). Second, for protected and
position-dependant symbols absolute addressing saves also
one level of indirection compared to the ltoff addressing
mode. The software convention models we developed can
speed-up all applications with significant global data traffic.
On SPECint2000, 176.gcc, 186.crafty, 253.perlbmk,
254.gap and 255.vortex gained 7%, 15%, 11%, 4% and 3%
respectively. The enhanced Linux preemption model also
removes most of the save/restores of the gp (global pointer,
[7]) register before and after function calls, but this
improvement was measured to be in the noise for OLTP
workloads and SPECint2000 benchmarks.

Figure 8. Speed-ups of data access optimizations

3.5 Speed-up from reducing D-cache stall cycles
Registerization of cross setjmp() lifetimes reduces the

spills/fills in functions with high register pressure. It also
reduces the memory stack size (fewer spill locations on the
stack) and the code size (fewer load/stores). A side effect of
this optimization is that it in some functions it eliminates
the spill/fill code for the callee preserved integer registers
(r4-r7 on Itanium) at function entries/exits. On a scaled run,
it was observed that registerization increases the RSE traffic
by about 40%, but the overall speed-up from this
optimization was 1.75%.

Restricting the floating-point register usage to only
scratch (caller-save) registers did not result in extra spill
code, because there is not much floating-point code in the
database source. A smaller setjmp() buffer was enabled by
using fewer floating-point registers (by removing the 19
preserved floating-point register f2-f5, f16-f31 from the
buffer), which resulted in fewer store/load to/from the
setjmp() buffer.

The setjmp() optimizations combined have been
measured to give gains between 2-5% for other database-
like applications as well. They have no impact on tests of
SPECint2000 benchmark suite, as all the longjmp() calls
there are cold.

It is beneficial to move strings and constants to the read-
only section instead of the data section. As the database
starts multiple sessions, each process copies the (read/write)
data section into its run-time image. Pushing data into the
read-only section helps, because this reduces the size of the
data sections and thus the copy overhead. The read-only
data section is loaded only once at application start-up time.

Sorting local data based on frequency and size gave a
small performance gain of 0.6% on a scaled setup as it
reduced the L3 cache misses. The layout of local data close
to the top of stack improved cache locality for the database
application in our setup.

3.6 Speed-up from reducing I-cache stall
cycles and instruction latencies

Figure 9 shows the performance speed-up from code
optimizations that target better I-cache utilization or help
hide load latencies.

Figure 9. Speed-ups of code layout optimizations

Function grouping for close to zero frequency functions
has been measured to give a speed-up of up to 3% on a
cached setup and never lower than 2% on a scaled setup.

The data for function inlining on a small subset of the
source base is also conservative in the sense that the 2%
gain is the lowest measured on any measurement setup.

Selective instruction prefetch hints as described in
section 2.3 increased the throughput by more than 1%.

Each of the above three optimizations decreased the
number of L3 instruction references by about 10%.

Hiding D-cache latencies by avoiding control
speculative cache miss stalls (section 2.2) improved

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

Lo
ca

l D
ata

 S
or

tin
g

Rea
d-O

nly
 D

ata

Small
 S

etj
mp()

Reg
ist

eri
za

tio
n

Lin
ux

 pr
ee

mpti
on

S
pe

ed
-u

p
in

 %

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

inl
ine

 re
co

ve
ry

co
de

fun
cti

on
 sp

litt
ing

sp
ec

ula
tio

n f
or

 la
ten

cy
ins

tr p
re

fet
ch

 hi
nts

fun
cti

on
 in

lin
ing

fun
cti

on
 gr

ou
pin

g

S
pe

ed
-u

p
in

 %

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

performance by about 1%.
Function splitting reduced ITLB [5] misses and gave a

gain of less than 1%, but consistently more than 0.5% on
any scaled setup.

The 0.8% speed-up for inline recovery code is from a
reduction in L3 cache misses.

The total contribution from this class of optimizations is
7.7%. Also, in this optimization class the performance gains
measured on a cached setup were in general bigger than on
a scaled setup. In one particular instance, for the relaxed
memory ordering (section 2.8) a 3.6% speed-up had been
measured on a cached system consistently in multiple runs.
However, this gain did not materialize in later
measurements on a scaled setup.

3.7 Speed-up from reducing RSE stall cycles
On OLTP workloads we measured a performance gain

of 1.15%, when at least 10 registers are saved on the
register stack before a call is invoked. This gain reflects
upon that the database code demands more stacked registers
and has a deeper call graph than, for example, the
benchmarks in the SPECint2000 benchmark suite [14].

3.8 Interactions between optimizations
To get an idea about how well the speed-up numbers for

the optimizations might add up, we did turn off all the
optimizations except for dynamic feedback profiling. The
performance difference between the two binaries was
18.76%, about 3% below the compound throughput gain of
21.88% for the optimizations in Figure 7. This indicates
that there is negative interaction among the optimizations,
which is an opportunity for more detailed analysis and
research.

4 Key learnings
The analysis of compiler optimizations for OLTP

workloads presented in this paper has yielded a number of
interesting observations.

First, contrary to conventional wisdom, compiler
optimizations can make a big difference for OLTP
workloads on both cached and scaled setups.

Second, a large set of compiler optimizations is
necessary to achieve excellent server application
performance.

Third, optimizations that target memory traffic do scale
very well and contribute significant gains to OLTP
workload performance. Some of these optimizations are
supported by the compiler, but also require changes to the
source code or user options. Specific examples for this are
the change of the jmp_buf structure for setjmp()/longjmp()
calls and the support of safe software convention models
for symbol preemption on the Linux operating system.

Fourth, dynamic feedback profiling is key to peak
OLTP performance. A hot function in database code might
be considered cold or insignificant in a SPECint2000

benchmark. However, although the profile is flat, there are
hot paths within the functions and the database code does
benefit from function layout and block ordering.

Fifth, some optimizations need to be tuned for memory
intensive code. For example, in applications with a
significant amount of D-cache misses it can be beneficial to
speculate loads, but not to speculate the uses of a
speculative load. This may avoid speculative miss stalls,
cover additional load latency, and enable inline recovery
code.

Sixth, the Itanium® register stack is very effective for
OLTP workloads. The RSE optimization (section 2.1, [14])
in its simple implementation reduced the RSE traffic by
more than 1%. Given that the total RSE traffic for OLTP
workloads is less than 10% even after applying the setjmp()
optimization described in section 2.6, a 1% gain is sizeable.
OLTP workloads are both more call intensive and have
bigger functions with higher register pressure than the
SPECint2000 benchmarks suite, where the RSE traffic for
the entire suite is only about 1% on a single Itanium 2
processor system with 6M L3 cache.

Finally, the register stack also enables the compiler to
registerize lifetimes that cross setjmp calls (section 2.6).
This can reduce the memory traffic for applications rich
with setjmp calls. In this context the compiler introduced
pseudo-edges to explicitly model the control flow from any
function that might call longjmp back to the associated
setjmp call. A similar technique can also be used to
optimize C/C++ programs that use exception handling.

5 Concluding remarks and future work
The paper discussed a repertoire of well-known and new

compiler optimizations and their impact on performance for
on-line transaction processing (OLTP) workloads on four
Itanium 2 processor systems running Oracle on a version of
the Red Hat Linux operating system. These optimizations
combined produce a 40% speed-up in OLTP performance.
The optimizations and their performance contributions have
been analyzed in detail. Also, both changes to the source
code and enhancements of the Linux preemption model that
make the compiler generate better code have been
described.

Memory traffic continues to be the major bottleneck for
OLTP workloads. More compiler research is needed to
explore effective, scalable optimizations that can help
reducing the memory traffic in large enterprise applications
like databases.

 The interaction among the compiler optimizations
presented in the paper may well deserve further study. We
also expect more performance gains from enhancing and
tuning some of the methods discussed.

6 Acknowledgments
Many people contributed to the OLTP performance

effort on the Itanium processor family. In particular, we

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

would like to thank Pierre Calixte, Michael Chynoweth,
Rajiv Deodhar, Corey Gough, Rakesh Krishnaiyer, Darla
Kuras, Chu-chow Lim, Chinang Ma, Bernhard Mulder,
Hubert Nueckel, Terry Pricket, Hiremane Radhakrishna,
Robyn Sampson, Stephen Skedzielewski, Sharad Tripathi,
Peng Tu, Vish Viswanathan and David Zhuang.

The Oracle development and performance teams also
contributed to performance analysis and suggested new
compiler optimizations. In particular, we would like to
thank Brian Hirano and Waleed Ojeil from Oracle
Corporation.

 Last, but not least, we thank the anonymous reviewers
for providing valuable feedback.

7 References
[1] ANSI Standard Programming Language C, Committee Draft

ANSI, January 1999
[2] J. Bharadwaj, W. Y. Chen, W. Chuang, G. Hoflehner, K.

Menezes, K. Muthukumar, J. Pierce, "The Intel IA-64
Compiler Code Generator", IEEE Micro, Sept./Oct. 2000,
pp 44-52

[3] G. Chaitin. “Register Allocation and Spilling via Graph
Coloring”, Proc. of the SIGPLAN '82 Symp. on Compiler
Construction, Vol. 17, No. 6, June 1982

[4] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H.
Nueckel, J. Shen, “Scaling and Characterizing Database
Workloads: Bridging the Gap between Research and
Practice”, Proc. of the 36th Annual ACM/IEEE Int.
Symposium on Microarchitecture, MICRO 2003

[5] Intel Corporation, “IA-64 Application Architecture
Software Developer's Manual”, Volumes I-IV,
http://developer.intel.com (January 2000)

[6] Intel Corporation, "Itanium™ Processor Microarchitecture
Reference", URL:ftp://download.intel.com/design/IA-
64/Downloads/24547401.pdf (August 2000)

[7] Intel Corporation, “Itanium™ Software Conventions and
Runtime Architecture Guide”, May 2001

[8] B. Kernighan, D. Ritchie, “The C Programming Language”,
Prentice Hall, 1988

[9] R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, C. Lim, J.
Ng and D. Sehr, “An Advanced Optimizer for the IA-64
Architecture”, IEEE Micro, Nov 2000, pp 60-68.

[10] S. Leutenegger, D. Dias, “A Modeling Study of the TPC-C
Benchmark”, Proc. of the 1993 ACM SIGMOD Int.
Conference on Management of Data

[11] Linux specifications,
http://www.linuxbase.org/spec/refspecs/LSB_1.3.0/IA64/sp
ec.html

[12] S.Muchnick, Advanced Compiler Design and
Implementation, Published by Morgan Kaufman (1997)

[13] A. Ramirez, L. Barroso, K. Gharachorloo, R. Cohn, J.
Larriba-Pey, P. Lowney, M. Valero, “Code Layout
Optimizations for Transaction Processing Workloads”,
Proc. of the 28th Annual Int. Symposium on Computer
Architecture, 2001

[14] A. Settle, D. Connors, G. Hoflehner, D. Lavery,
“Optimization for the Intel Itanium Architecture Register
Stack”, Proc. of the International Symposium on Code
Generation and Optimization, CGO 2003

[15] A. Settle, D. Connors, G. Hoflehner, D. Lavery, “Compiler
Controlled Register Stack Management for the Intel Itanium
Architecture”, EPIC-3 workshop, 2004

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

