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Abstract military applications store extremely sensitive information
where confidentiality is critical. Since these computers are

Even as modern computing systems allow the manipu-often connected to potentially hostile public networks, such
lation and distribution of massive amounts of information, as the Internet, security mechanisms to protect the confiden-
users of these systems are unable to manage the confidertiality of this data are vital.
tiality of their data in a practical fashion. Conventional Various discretionary access contradecurity mecha-
access control security mechaniso@not prevent the il-  nisms [14] are typically used to protect data. For each data
legitimate use of privileged data once access is granted. access, a policy (e.g. an access control list or file permis-
For example, information provided by a user during an sjons) is checked to see if the access is permitted, and if so,
online purchase may be covertly delivered to malicious the data is returned. While these mechanisms prevent unau-
third parties by an untrustworthy web browser. EXxisting thorized data accesses, once a program is granted access,
information-flow security mechanisnuo provide this as-  the data’s owner has no control over how the application
surance, but only for programmer-specified policies en- yses the data. Thus, access control security mechanisms
forced during program development as a static analysis on give data owners only two options: deny access to data al-
special-purpose type-safe languages. Not only are theseogether or trust programs to keep data confidential.
techniques not applicable to many commonly used pro-  yntortunately, deciding which programs to trust is dif-
grams, but they leave the user with no defense against Masic;t \Web browser embedded applications such as Java
licious programmers or altered binaries. _ applets or Flash applications, for example, have made it

In this paper, we propose RIFLE, a runtime information- ,qqjhle to download and immediately execute arbitrary
flow security system designed from the user's perspectivepqqrams from untrusted sources on the Internet with lit-
By addressing information-flow security using architectural a4 to no user intervention. Even full applications explic-
support, RIFLE gives users a practical way to enforce their itly downloaded by the user from untrusted sources can
own information-flow security policy_on all programs. We pe problematic as demonstrated by so-catipgwarepro-
prove that, cor_1trary to statements in the literature, run- grams [17] (programs that typically install with other pro-
time systems like RIFLE are no less secure than existinggramg and send data collected from the host computer back
language-based techniques. Using a model of the architec, o program’s creator).
tural framework and a binary translator, we demonstrate
RIFLE’s correctness and illustrate that the performance

cost is reasonable.

Unlike access control systemigformation-flow secu-
rity (IFS) systems [7, 8, 12, 21, 23] allow untrusted applica-
tions to access confidential data while preventing them from
leaking this information to other programs or people with-
out explicit authorization from the data owner. The focus of
existing work on these systems has been on language-based

In modern computing systems, security is becoming in- and static analysis mechanisms for implementing the secu-
creasingly important. Computers store tremendous amountsity policies. In these systems, programs are written in spe-
of sensitive information. Personal and business comput-cial programming languages that contain security annota-
ers store private data such as tax information, banking in-tions. During compilation, the compiler, assisted by source
formation, and credit card numbers. Computers used forcode annotations, verifies that illegal information leaks as
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defined by the programmer cannot occur (except possibly (b) empowers users with the ability to set policies for

through a variety o€overt channelf21, 28]). their data rather than relying on programmers.
Unfortunately, although these systems can enforce (c) is language independent, supporting legacy
information-flow security policies for programs written in codes.

an IFS programming language, the user has no guarantee 4 - an evaluation of RIFLE for performance on compute

of this safety since the compiler assures the programmer,  jyiensive benchmarks and a demonstration of its abili-
not the user, of a program’s safety. To the user, a binary ties on applications of practical interest.

for a safe program is indistinguishable from one that is un- . o )
safe. Use of a proof-carrying code (PCC) framework [24] 5. Insight that sets future research directions in user-

can overcome this problem by proving properties of the pro- centric information-flow security including perfor-
gram to the user. However, PCC frameworks, like the IFS mance opportunities, other uses for information-flow
programming languages, suffer from a low adoption rate tracking, and the utility of a declassification scheme.

and from their inability to deal with existing code.
Additionally, even if all programs were written in IFS

languages and validated by users with a PCC framework

the user would still be at the mercy of programmer-defined

policies. This must occur in language-based systems sinc

policy enforcement occurs at compile-time. It is possible

to build run-time (as opposed to compile-time) IFS systems

which allow users to establish their own security policies.

However, few run-time systems have been studied becaus® |nformation-flow Security

run-time systems are believed to be inherently less secure

than language-based, static systems [21]. As a result, exist-  Information-flow security (IFS) mechanisms allow users

ing run-time systems are either not practical [27] or restrict to control or audit information even after programs have

the user’s freedom in defining policy at compile time [31]. been given access. This is a powerful ability with many

In this paper, we prove that, contrary to these beliefs, run- applications ranging from supporting compliance with new

time systems are no less powerful than static systems, andaws mandating the auditing of medical records to alerting

we reestablish the feasibility of enforcing information-flow users when spyware delivers sensitive information to a net-

security completely from the user’s perspective. work device. Here, however, the discussion of IFS begins
With this insight, we present RIFLE, a Run-time In- with a simple example.

formation FLow Engine capable of enforcing user-defined

information-flow security policies foanyprogram. In RI-  2.1. An Information-flow Security Example

FLE, information-flow security policies are enforced using

a combination of binary translation and a modified archi- . Cor]su;er _t:e average Sorr?e computer us&r' call ?e\/:/'Al-
tecture. Program binaries are translated from a conventionafC8- Who decides to upgrade her computer to Microsoft Win-

instruction-set architecture (ISA) to an information-flow se- dows XP,‘ At the conclusmn_ of the upgrade_ Process, Allce
cure (IFS) ISA. The translated programs are executed onnust register her copy of Windows by sending a seemingly
hardware that aids information-flow tracking, and the exe- random, possibly encrypted, sequence of numbers that was

cuted programs interact with a security-enhanced operating’fcomputecllI bXI_thehlnstallqgon s?]fth;re o M'CLOSOft' Un-
system that is ultimately responsible for enforcing the user’s ortinately, Alice has no idea what these numbers mean or

policy. This three part enforcement mechanism ensures thatVhat mformatlon tk:jeg eﬂcoﬂg. Th(la_ so,ftware clalms th; SIg-
confidential data is not leaked and provides users with Com_natu_re 1S ‘?Omp“‘e y hashing Alice’s comp_uter ardware
plete control over the confidentiality of their data. configuration, but the sequence could contain sensitive in-

The contributions of this work are: formatlon that was stored on All_ces compute_r. While it
is likely that the signature is benign and contains only the

1. The first description of the information-flow problem information the installation software claims, the computer
from the user’s perspective. and the software running on it provide Alice no mechanism

2. A proof that, contrary to conventional wisdom, © Verify thatthisisinfactthe case.

language-based information-flow systems are less se- This situation is not restricted to the installation of Mi-
cure than previously thought. crosoft Windows XP. In general, any program Alice runs

) will take input data and transform it into output data. Un-
3. An architectural approach, called RIFLE, that fortunately, Alice does not know what parts of a program’s
(@) is at least as powerful as language-basedinput are encoded in the various outputs. Since the data

The next section gives context for IFS. Section 3 de-
scribes existing language-based IFS mechanisms which
'have been studied heavily in the literature. Section 4 ex-

lores the challenges faced by language-independent, run-
ime information-flow systems. Section 5 presents RIFLE,
and Section 6 evaluates the properties of it. Finally, the pa-
per concludes in Section 7.

information-flow systems. transformation effectively occurs in a black box, Alice is
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unable to make an informed decision about how she can de3. EXxisting IFS Systems

liver the program data while maintaining the confidentiality ] ) ) )

of her input data. Instead, she is forced to make her decision 10 €nforce an information-flow security policy, an IFS
on the basis of trust or necessity. In the Windows XP reg- _mechanlsm must be able to identify th_e label of all data be-
istration process, Alice would probably allow the signature Ing processed by a program and verify that all data flows
to be sent to Microsoft since she either trusts Microsoft or I it are legal with respect to a specific policy. This sec-

realizes that her only other option is to delete Windows. ~ fion will describe a compile-time approach, used by ex-
isting information-flow security mechanisms, for tracking

. . o . data labels and identifying illegal flows. These systems rely
2.2. Ensuring Confidentiality with IFS on special information-flow secure programming languages
that allow programmers to annotate their programs with la-

Information-flow security allows data confidentiality to Pels. From these annotations, the compiler wiétically
be ensured even in the presence of untrusted applicationscompute the labels of all expressions in the program and
IES po“cies are defined by a set of annotationsy cdbed Verify that all information flows are Iegal. Since these Sys-
bels that are attached to all values and storage locations intems verify the security of a program at compile-time, they
a program, and a set of legédws pairs of labels, that de- ~ are in a class we will caltatic information-flow security
termine how information can flow. If a value has label mechanisms. This section describes the properties of these
and a storage location has lalgl the value can be stored eXisting systems and outlines their shortcomings.
into that location only if the flow; — 5 is allowed by the
policy. To allow access to data while ensuring security, an
information-flow security mechanism’s goal isto verify that  The majority of statements in a program compute some
a program only contains legal flows. value based on one or more variables and then store the re-

Returning to the Windows XP registration example, one sults into some other variable. For example, consider the
could imagine attaching the labgrdware to data describ-  pseudo-code = a + b. Clearly information is flowing
ing computer hardware and labptivate to confidential from the variables andb into the variable. If a program-
data. When the installation software computes the hard-mer were to annotate the variabkesb, andc with labels
ware signature, the label of the signature would inform the (which will be denoted ag, b, andc respectively), and if
user of what data was used to produce it. If the data la-the compiler knew the set of legal flows, then it could verify
bel ishardware, the user (or the information-flow security that the flowsa — ¢ andb — ¢ were legal.
mechanism) would send the signature to Microsoft. Onthe  Rather than check these two flows independently, for
other hand, a label ofhardware, private} would indicate  simplicity, the static analyses in the compiler define a la-

3.1. Information Flow via Data Flow

that both hardware configuration informatiand confiden- bel for each expression in the program. The compiler then
tial data were used to produce the signature. In such a caseshecks if the flow between the expression label and the des-
a user may be less inclined to reveal the signature. tination variable label is legal. To find the label for an

Using simple named labels and explicit enumeration of €xpression, the compiler computes foen () of all the
legal flows as described above is one example of how oneoPerands in the expression. For the= a + b example,
could define an IFS policy. More formal methods exist the compiler would calculate a label for the expression
including those which allow distributed declassification of b by computinga & b. The join operator combines labels
data [10, 22]. However, regardless of the specific label- and produces the most permissive label that is at least as re-

ing methodo'ogy, the mechanisms used for Verifying an strictive as both of its OperandS. |f, for example, labels were
information-flow policy remain unchanged. sets of users permitted to access some data, then the join

operator would be set intersection; only those users allowed

IFS does not completely remove trust from the system : :
since a user must trust the enforcement mechanism. Fortu!® '62d all data used in a computation should be able to read
he result of the computation.

nately, the size of the trusted computing base can be smalf
and many techniques exist to establish a trusted computg 2 |nformation Elow via Control Flow

ing base. There are various techniques to prove that pro-

cessors are trustworthy including Intel's LaGrande [13],  Unfortunately, verifying the data flow of a program is
Microsoft's Next-Generation Secure Computing Base (Pal- insufficient to verify that no illegal information flows occur
ladium) [20] and the Trusted Computing Platform Al- inthe program. Consider the program shown in Figure 1. If
liance [30]. Mechanisms to establish trusted memories havethe variablex andy are both Boolean variables, then at the
also been proposed [18, 19, 34]. Finally, techniques to boot-end of this segment of pseudo-code, the valug @fould
strap the trusted system to create a usable trusted base froine equal to the value of. Clearly, there is information flow

a small set of trusted components also exist [2, 3, 29]. betweerx andy, but this flow does not occur through data
Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) CSFK/[PUQTER
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% i (yx ;jrsg{e) security can only be guaranteed for programs written in spe-

431 else cific IFS languages. It is possible to extend an existing lan-
y = false; H iAo H

5/ Since y == x, the label of y should be guage to support mforr_naﬂon flow security [21], however

6 I/ at least as restrictive than the label of x only those languages with strong type safety guarantees can

be extended in this way. Therefore, all legacy applications
cannot be checked for security and future applications de-
flow. In the literature, this type of flow is called @mplicit ~ veloped in type-unsafe languages such as C or C++ also
flowto contrast it with thexplicit flowseen earlier [28]. cannot be checked for security.

To verify that no illegal implicit flows occur in a pro-
gram, for each statement, the compiler must identify which 4. The Dynamic Approach
branches control the statement. In this example, the condi-
tionx == true controls the statements on lines 2 and 4.  Since policy determination and enforcement occur at
Thus when performing the data flow verification for those Compile-time in static IFS systems, users are unable to set
statements, the compiler must also verify tRat- y is a and enforce individual policies and are at the mercy of pro-
legal flow. Just as in the case of statements with multiple 9rammers to provide guarantees of security. To provide IFS
source operands, in this example, the compiler can Verifyfrom the user’s perspective, this section reconsiders the fun-

Figure 1. Information flow through control

the flowstrue @ x — y andfalse & x — y. In gen- damentals of run-time solutions which have been largely
eral constants are annotated with the least restrictive labePPandoned by IFS researchers. The run-time approach is
denotedl and | @& n = n. the core of RIFLE as described in later sections.

3.3. Flow Verification and Type Checking 4.1. Tracking Information Flow Dynamically

Static systems function by having the compiler deter-  pynamic mechanisms track information flow at program
mine whether the information flows in the program are ryn-time rather than during compilation. In a dynamic
compatible with the programmer’s label annotations. This jnformation-flow approach, instead of statically assigning
process of verifying flows by checking labels is very sim- 3 |abel to each storage location, labels act as additional pro-
ilar to the process of type-checking [21, 22] a program. gram data that propagate through computation. When an
Since the information-flow labels of variables are concep- operation is performed, the labels, in addition to the data,
tually the same as types, performing “type-checking” of the are read from the operation’s inputs. The join of these la-
information-flow labels (for a type-safe language) will guar- pels is computed, and, in addition to the operation’s result,
antee that no data with a given label will ever be transferredthe resulting label is stored in the target storage location.
into a variable with an incompatible label. Initial data labels are provided by the user along with the
3.4. Shortcomings of Static Systems program input. Consider the earl_ier examp_le:_o# a +

b. If this code were executed with dynamic information-

While static systems do provide information-flow se- flow tracking, rather than verifying that the flavdb — ¢
curity they have several disadvantages stemming from theis legal, the labehssignment := a @ b would occur.
programmer-centric approach. First, since policy enforce- This data flow mechanisitnacksinformation as it flows
ment occurs at compile-time static IFS systems provide nothrough the system, but it doest provide any level of se-
guarantee of security to users, but instead, provide them tocurity. To enforce security, dynamic systems verify flows to
the programmer. Static IFS systems can be embedded int@utput channels (files, shared memory, etc.). Unlike storage
a proof-carrying code framework (PCC) [24], where pro- locations, output channels have a constant, user-defined la-
grammers provide users with compiler-generated securitybel. When a program operation attempts to write data with
proofs for programs. Unfortunately, the user is at the mercy label [ to an output channel’, rather than assigning the
of the programmer to provide such a proof. output channel a new label, the system verifies that the flow

Even if a PCC framework is used, security policy deci- | — Cislegal. If the flow is found to be illegal, the program
sions are still made by the programmer. Recall that it was terminates. Otherwise, if the flow is legal, the data is copied
the programmer who labeled program variables, and, sinceto the output channel and the program continues execution.
flows were verified during compilation, it was the program-  Just as in the static approach, it is necessary for a dy-
mer who defined the set of legal flows. If the security policy namic mechanism to track information through implicit
chosen by the programmer is too lax or overly conservative flows in addition to explicit ones. The e approach
for the user, the user must abandon use of the program offor handling implicit flows is to directly apply to dynamic
take risks with its use. systems the control-flow technique used in static systems.

Finally, static information-flow systems dramatically re- Static systems tracked implicit flows by joining the label
duce the space of applications available to users since thef controlling branches into the label that results from an

YF]',F.
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cause program termination, observing whether or not this

int secret_data; int i; . . . .
program terminates abnormally provides information about

BB1: secret data = ..; the program input. Static systems avoid this attack since se-
BB2: for(i = INT_MIN; i <= INT_MAX; i++) { curity violations are identified at compile time and are input
BB2: ifi == secret_data) i
BB3: work(); //throws an unchecked exception Indep'endem . .
BB4:  printf(’x"); This type of attack causes information to leak through
BBS: ) the program termination channedhich is an example of
(a) Termination channel attack program a covert channel[15, . ile static systems avoi
t ch [15, 28]. While static syst d

abnormal program termination due to security violations,
they also have termination channels since the channel exists
whenever a program can throw anchecked exceptiqan
exception that causes program termination) such as an out-
of-memory exception or a null-pointer dereference. IFS vi-
olations are only one example of unchecked exceptions. It
is believed, however, that static systems are less vulnerable
to termination attacks because they can only leak one bit
of information per program execution [21] while dynamic
systems can leak an arbitrary amount of information per ex-
ecution. Unfortunately, this iaot the casgboth systems
leak identical amounts of information.

Consider the pseudo-code shown in Figure 2(a). The
program in this example will output the value of the vari-
ablesecret _data in unary. For example, if the value of
secret _data is 7, then the program will output the char-
acter ‘X’ 6 times (“xxxxxx")—the program terminates be-
fore the seventh ‘X’ is printed. The program iterates over all
possibleinteger values, in order, outputting an ‘X’ each
time secret _data doesnot match the iterator. When a
match is encountered the program callswwk function
which intentionally causes an unchecked exception result-

ing in program termination.

(b) Perceived CFG (c) Actual CFG

Figure 2. Termination channel attack

operation’s computation. In the static system, this label was
checkedagainst the label of the destination storage location,

while in a dynamic system, this label would hssignedo Assuming that the variablsecret _data was marked
the destination storage location. While this approach seemgVith a label which should not be permitted to flow to
secure, Section 4.2.2 will explain why it is inadequate. the output, then this program ought to be rejected by an
information-flow mechanism. Unfortunately, neither static
4.2. Static vs. Dynamic Mechanisms nor dynamic mechanisms will prevent this attack. The data

leak can be traced to a subtle, incorrect assumption about

Existing work has primarily focused on static the control-flow graph of the program. Theiva control-
information-flow mechanisms because they are believed toflow graph for the program is shown in Figure 2(b). The
be inherently more secure than dynamic systems [22]. Thisnode in grey marks the first node after BB2 that is con-
section first shows that this is, in fact, not the case. Thetrol independent of the branch in BB2 (the immediate post-
section then proceeds to discuss why an effective dynamicdominator). Since BB4, the node containing the statement
scheme must handle certain attacks that are naturallywhich prints ‘x’, is not dependent on the conditional state-
avoided by static systems. Later sections will illustrate how ment in BB2 and since the print statement outputs a con-
RIFLE prevents these attacks. stant, it is not dependent on any confidential data. Conse-
quently both static and dynamic information-flow security
mechanisms declare the program safe for execution.

Figure 2(c) shows a modified version of the control-flow
Static systems are believed to be more secure than dynamigraph. An edge between BB3 and FINISH has been added
systems because dynamic systems are vulnerable to the folishown as a dotted line). The new graph is a more accu-
lowing attack. A program is constructed that contains a se-rate representation of ttaetualrun-time control flow since
curity violation for certain input sets, but no violation for the unchecked exception in BB3 could cause the program
others. Since security violations (in dynamic IFS systems) to terminate. In this new control-flow graph, BB4 (which

YF]',F.
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contains the print statemerif) control dependent on BB3 b=false _ :
and transitively on BB2. Therefore, although the print state- ?(“) \=tw ‘bm"z‘b
ment is outputting a constant, an information-flow security \Y% w Y

mechanism would forbid the output due to the control de-
pendence on confidential data.

Unfortunately, since dividing by zero, dereferencing a
null  pointer, indexing an array out-of-bounds, or even ex-
hausting some system resource could cause an unchecke
exception, using the correct control-flow graph would cause
information-flow security mechanisms to reject most prac- truye andb := ¢ = | since the condition in block X
tical programs. It has been suggested that unchecked excefis based orc and Y is control dependent on block X. The
tions be forbidden [8], however such a scheme is also unre-program then completes execution in block Z. Once again,
alistic. For many programs, there exists no suitable recov-at the end of the executiom, is equal toa, butb is less
ery from anull  pointer dereference, for example. There- restrictive than the.
fore, even if the exception were checked, the programwould  This program clearly has a flow of information from
have no choice but to explicitly exit. The control-flow graph 3 to b, but the nae dynamic information-flow tracking
of such a program is identical to the correct control-flow mechanism is not appropriately updating variable labels.
graph for a program with unchecked exceptions. Conse-|f the flow a — stdout is illegal, then this program
quently, forbidding unchecked exceptions would also causewil| avoid the policy by hiding the information flow. This
most programs to be rejected by an IFS mechanism. attack against dynamic information-flow mechanisms was

Despite this attack and other possible attacks throughoriginally proposed by Fenton [9], and it demonstrates that
covert channels, information-flow security is still valuable. building a safe dynamic scheme is nontrivial.

This particular attack for example, requires a computation  The attack is possible because theiveadynamic

and output size that is exponential in the number of bits information-flow tracking mechanism only modifies the la-
leaked. Attacks similar to this one may not output data in a bels of storage locations when something is assigned to that
unary format, but will also be similarly rate-limited. Thus, storage location. Unfortunately, information flows can oc-
these attacks cannot leak substantial amounts of informacur because instructions an®t executed. For example,
tion in any reasonable amount of time. skipping the execution of block W communicates the value
of a to ¢ just as executing block W does.

In order to address this problem it seems as though a dy-
namic scheme would need to analyze the paths of execution
While both static and dynamic systems can both leak arbi- nottaken to see what storage locatiausild potentially be
trary amounts of information, the e dynamic control-  Written. However, such schemes are impractical because the
flow management strategy (based on a straight-forwardsize of the not-taken path can grow exponentially if it con-
translation of static systems) can do so at a rate linear intains many branches. Further, looking at the not-taken path
the number of bits leaked. may not reveal the accessed storage locations because they

Consider the effectiveness of the straight-forward dy- are hidden behind pointer computation. In general identi-
namic control based information-flow strategy described fying what memory locations could possibly be accessed is
earlier on the program shown in Figure 3. The program undecidable [16, 26].
takes one Boolean input. Assuminga = secret at the Given that fully examining and analyzing the full

start of the program, Table 1 traces the values and labelscontrol-flow graph is not feasible dynamically, a workable
of all variables for the case when — false and when  dynamic scheme must somehow ensure information-flow

Figure 3. Program demonstrating that dy-
namic information-flow security mechanism
d must be insecure or overly restrictive

4.2.2. Control-Flow Attacks

a— true . security in the presence of incomplete information. Any
Whena isfalse , the program follows the solid path in such dynamic scheme must be overly restrictive in that it
the figure. When executing block W,:= true andc := will consider some secure programs insecure, as shown by

a — secret since the condition in block Vis basedarand  the following theorem.

\t/)\ll |skc>(2ntrhol de;;endent on tf)lo”Ck[Y. Exicutlgln csr;t:nugs M Theorem 1. Any information-flow security mechanism that
”oc h w e_rebtl € progf;am 3 st rr? ug ;0 for:: €aVING  cannot know what state is modified by code that is not exe-
all other variables unaffected. At the end of the execution, ¢, 1 js either insecure or overly restrictive.

b is equal taa, butb is less restrictive thaa.
Whena is true , the program follows the dashed path We say that an information-flow security mechanism is
in the figure. The program falls through from block V to secureif no information-flow policy is violated (a mech-

X. From there control is transferred to block Y whére= anismis secure if violations are detected and prevented
Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) CSFK/[PUQTER
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a = false a = true
Block Label a a b b [§ [3 a a b b c [
\ false secret | false il false 1 true secret | false 1 false 1
w false secret | false 1 true secret
X false secret | false 1 true secret true secret | false 1 false 1
Y true secret true 1 | false 1
4 false secret false 1 true secret true secret true 1 | false 1

Table 1. Execution trace of program from Figure 3

dynamically). An information-flow security mechanism is put channels in a program pass through the operating sys-
overly restrictiveif some legal flow is prohibited. With tem, the operating system will be augmented to use the la-
these definitions, the theorem follows directly from the un- bels tracked by the architecture to ensure that no illegal flow
decidability of determining semantic dependences betweenoccurs. The translation is not intended to eliminate covert
program statements [25]. channels (such as timing channels) [15, 35], but to identify
implicit flows in a program. Solutions found in the litera-
ture to address covert channels [35] are directly applicable

Theorem 1 clearly states that in order for an information- 1 this system.. _
flow mechanism to be secureiécessarilynust be overly This section will first present an abstract architecture that
restrictive. This necessity stems from the undecidability of ¢@n rack information flow through explicit flows. The sec-
determining semantic dependence between two statementdon then describes the binary translator which augments
in a program. While this undecidability does preclugea ~ Programs with new instructions to conveftimplicit flows
fectinformation-flow security system, it doest preclude into exphcn ones. The section then gives a brief explanation
the existence of restrictive systems that relyconservative ~ Of considerations for the operating system.

solutions to the semantic dependence problem. In practice . .
conservative solutions to many undecidable problems are5'1' Abstract Information-Flow Architecture
used in lieu of perfect solutions. For example, compilers To enforce information-flow security, our mecha-

regularly use conservative pointer alias analyses to facili- _. . ;
> S nism will convert programs targeted for a conventional
tate optimizations. The optimizations are successful, and.

correct. desnite the undecidability of pointer analvsis instruction-set architecture (ISA) to programs for an
’ P! u dability ot point YSIS:  information-flow security (IFS) ISA. The IFS ISA aug-
The challenge, therefore, in building a dynamic

. . . . o . ments all state defined in the base ISA with space to store a
information-flow security system is identifying which ap-

. ! : label; this includes augmenting both registers and memory.
proximate solutions to the semantic dependence problem g 9 g 4

. . Additionally, for each instruction in the base ISA, there is
yield secure enforcement mechanisms that aretomte- . T .
T . . L an instruction in the IFS ISA. The semantics of the IFS ISA
strictive in practice. The remainder of the paper will discuss

2 dvnamic information-flow security mechanism which is instruction are identical to that of the base ISA instruction
Y . . y . with respect to the state defined by the base ISA. Converted
secure, buadaptsto information obtained from static anal-

. I . programs, therefore, will have identical semantics to that
ysis to become as permissive as possible. To allow the pro- L o

. . of the original program. In addition to these base seman-
posed mechanism to be independent of the language a pro:

. . S . ) tics, each instruction in the IFS ISA will use the augmented
gram is written in, it consists of architectural component

. . . . state to track explicit information flows. To allow translated
to track information flow, a binary translation component

t0 auide the architecture. and an operating svstem com O_programs to track implicit flows, the IFS ISA also defines
9 . ' operating sy 'PO3dditional security registers to hold auxiliary labels and in-
nent to determine and enforce policy. Since the mechanism

. : . structions to manipulate these security registers and the la-
requiresno annotations from the programmer, it not only

. ) . bels affixed to general purpose registers. Since the original
supports future programs written in arbitrary languages, but . .
. ; - L program does not have access to the security state and since
can be directly applied to existing applications.

the binary translation is trusted, attacks using the security
5. RIFLE state are impossible.
The augmentations described above can be applied to

RIFLE works by translating a normal program binary any conventional ISA. However, for clarity, the remainder
into a binary that will run on a processor architecture that of this section will discuss how information-flow security
supports information-flow security. To avoid the pitfalls can be implemented with the abstract ISA shown in Table 2.
dynamic mechanisms encountered while tracking implicit This table shows the base ISA instructions and their seman-
flows, the binary translation will conveal implicit flows tics. These instructions represent the common instructions
to explicit flows. The RIFLE architecture is then responsi- found in a general purpose RISC ISA. Notice that all regis-
ble only for tracking explicit flows. Since access to all out- ter to register instructions have been condensed into a sin-
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Base ISA Instruction [ Base ISA semantics [ IFS ISA Instruction Augmented ISA semantics ]
regop R[a]=R[b],R[c] | R[a] := R[b] op R[c] <SI[jl....>regop R[a]=R[b,R[c] | R[a] :=R[b] & R[c] & S[] ..

load R[a]=[R[b]] R[a] := Mem[R[b]] <S[il.. .. >load R[a]=[R[b]] R[a] := Mem[R[b]] @® R[] ® S} @ ..
store [R[a]]=R[b] Mem[R[a]] := R[b] <S]j]....>store [R[a]]=R[b] Mem[R[a]] :=R[a] ®R[b] ®S[] & ..

(R[a])branch T if(R[a] )jumptoT (R[a])branch T -
- - <S[j.. .. >join S[a]=S[b],S[c] Sla] :=S[b] ®&S[c] &S] & ..

Table 2. Abstract machine instructions: R[i] refers to general register i, S[i] refers to a security
register i, Mem[a] refers to the memory location specified by the address a, and X refer to the label
of the data element X

When the store is performed on line 12, since it uses se-

3 4 Do e oo e curity operandS[3] , the stored data will have the label
2 i c wil beRstzore_d (i)n R3] R[5] @ R[2] @ S[3] . SinceS[3] is more restrictive
z oy R = o thanS[1] andS[1] containsR[1] , the flow fromR[1]
6 (R[1]) branch .L1 to the memory location will be correctly identified.
7 mov R[3] = 1
8 .L1: (R[3])) branch .L2 ) ) .
9 mov R[2] = 1 5.2. Automatic Binary Translation
10 .L2: store [R[5]] = R[2]

(a) Program from Figure 3 translated into the base ISA Since the IFS architecture only tracks explicit flows, an

input program must be converted into a program where all
1 1/ Assume R[] contains a implicit flows are made explicit. As was described in the
% Z b w_i” Ee s;(oreg in g{[g}] last section, this can be accomplished by translating an in-
c wi e stored In H H H H

2 mov R[2] = 0 put program binary into a secure binary by adding the ap-
g mov R[3] = 0 propriate instructions and security operands. This section
5 R et D will describe how these transformations can be performed
g ~ SSILp> mov R[3] = 1 automatically by a binary translator. The binary translator
10 S Mo o a0 will leverage static analysis to make the information-flow
11 <S[3]> mov R[2] = 1 secure binary as permissive as possible.
12 L2: <S[3]> store [R[5]] = R[2]

(b) Program from Figure 3 translated into the IFS ISA ) _
5.2.1. Basic Translation

Figure 4. Example of IFS ISA tracking implicit Since all implicit flows occur due to control transfer instruc-
flows tions, the binary translator must first define a security reg-
ister based on the predicate of the branch. Each branch in-

gle instruction. For each base ISA instruction, the table Struction of the form:

also shows the IFS instruction and its augmented seman- (R[a] )branch T

tics. Except for the branch instruction, all IFS instructions

take additionakecurity register operandshich are used to  gets replaced with the following pair of instructions:
help track implicit flows (these operands are listed in angle

brackets before an instruction). Finally, the IFS ISA has one join S[ ¢ =R[qd],L
additional instruction that computes the join of two labels. (R[a] )branch T

Before describing how automatic binary translation can
be used with an IFS ISA to track implicit information flows, ~ Prior to this transformatior§[ ¢] should be an unallocated
consider how the program shown in Figure 3 could be trans-security register that is not related to any state in the base
lated to the IFS ISA to prevent information leaks. The pro- ISA. Additionally, for every instruction which is control
gram has been translated into the base ISA and is shown irflependent on the branch in the original program, the bi-
Figure 4(a). The print at the end of the original program has nary translator addS[ c] to the instruction’s list of security
been replaced with a store instruction. The IFS ISA trans- operands.
lation is shown in Figure 4(b). Two security register defines  If only this transformation were applied, the translated
have been added to the program on lines 6 and 9. The deprogram would be equivalent to theima translation from
fine of S[3] on line 9 will compute the joiRR[3] ®S[1] . static IFS to dynamic IFS discussed earlier.
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emp.gt R[1] = R[2], RI3] // R[1] = R[2] > R[3]

(R[1]) branch .end algorithms which may identify false dependences, but will
store [R[2]] = 7 Il Mem[R[2]] = 7 not omit any true dependence) which can be used to deter-
.end: ... /I Rest of program... . . . . .
mine the set of store instructions which write to the same
Figure 5. Code conditional variable store. address as a particular load instruction reads [5, 6, 11, 33].

While these analyses operate at the source level, other anal-
yses have been described which operate on program bi-

Consider the attack (shown in Figure 3) on thévedrans- naries [4]. These analyses are able to reconstruct a pro-

lation discussed earlier. Using the currently defined transla-9r@m'’s control-flow graph (in the presence of register in-
tion, at node X, the register containing the variableould ~ diréct jumps) and subsequently perform pointer analysis.

have the labeh only if the path through node W is taken. Notice that as the quality of memory dgpendence analysis
As was described earlier, the varialecontains the com-  Improves, fewer false dependences will be observed dur-
plement of the variabla regardless of which path was tra- N9 binary translation making the translated program less

versed. Therefore, our translation needs to ensure that th&€Strictive.

variablec has the labe& regardless of which path is tra-
versed. 5.2.3. Handling Loops

Ideally, the binary translator would insert an instruction e translation described thus far will work for acyclic
on the direct path from node V to X to perform a label .q4e  However, if registers or memory locations are live
join restrlct'lng the labet. Unfortunately, if thg variable  ,.10ss the back edge of a loop, the translation for branch
¢ is stored in memory (rather than a register), it may not be j,qtr,ctions described earlier can potentially cause informa-
known where the variable is stored. For example consider o, |eaks. This occurs because the security register defined
the code shown in Figure 5. In the figure, if the branch is 55 a1 of the translation may potentially be used by instruc-
taken, memory is modified at the location givenRY2] . tjons after the back edge is crossed. If the branch instruction
If the branch is not taken, thg valueRf 2] must bediffer- redefines it, then values computed under earlier conditions
entthan the value of the register had the branch been taken,y; pe accessible under the new label stored into the secu-

Therefore, inserting code to restrict the lab#m[R[ 2]] iy register. Since the new label is potentially less restric-
if the branch is not taken will modify the label otifferent /6 than the old label, this may cause information leaks.

memory location than if the branch were takenR[f2] is 14 5y0id this potential leak, the security operand defined by
bimodal (i.e. it only takes on one of two values), then it will o1 pranch instruction should be:

still be possible to distinguish between what path was taken join S[ ¢ =R[d],S[]
by analyzing the appropriate location in memory. o _

To avoid this problem caused by memory indirection, in- By defining the security operand before each branch as the
stead of inserting an instruction along the not-taken path ofjoin of the branch predicate and the previous value of the
a branch, the binary translator will append the security reg- S€curity operand, the security operand does not lose the in-
ister defined by the branch to the list of security Operandsfo_rmatlon it prewous_ly contained. Therefore this (_jef_lnltlon
on all instructions thapotentiallyuse values defined by in-  Will be secure even in the presence of loops. This instruc-
structions control dependent on the branch. For example tion will cause the security operai®] c] to monotonically
recall the example Figure 4. The store instruction on line 9t more restrictive. _ o
10 in Figure 4(a) is control independent of the branch on ~ To avoid making security operands overly restrictive,
line 8. However, in the secured program the store on line 12€ach security operand annotated onto an instruction due to
is annotated wit!S[3] , the security register for the branch @ conditional reaching definition, will be unique to that in-

on line 9, since the store usB§2] and there is a define of struction. At each defining location, this security operand
R[2] control dependent on the branch. will be set to the labell. This transformation remains se-

Conceptually, this strategy restricts a value's label when CUre, since redefining a storage location destr(_)ys all infor-
it is usedrather than when it idefined This strategy is safe mation that could have been learned due to assignments that

sinceall instructions that could observe the result of a con- did notoccur. Since this information is destroyed, we no
ditional variable assignment, see the data with a restrictedlOnger need to remember the security label of that informa-
label. tion. Redundant code introduced by using a unique security

Deciding what instructions can observe values defined registers for security operands will be eliminated through

by other instructions can be easily accomplished for registercompller optimizations.

based instructions using regching-_definitions anal_ysi_s (1] 5.3 Security

For memory load and store instructions more sophisticated

memory dependence analysis is necessary. The literature While a formal proof of security is beyond the scope of
describes various conservative alias analysis algorithms (i.ethis paper, this section will assert a definition of security and
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then sketch a proof of the soundness of the binary transla-RIFLE architectural extensions. Each program processes

tion with respect to this definition. multiple files, each with a different security label. Rather
. ) . than defining labels for output streams and enforcing a par-

Definition 1. A program is secure if, for any threshold la-  cyjar policy, output files were annotated with labels at the

bel and any two program inputs which are identical for all ,yq |evel. Program execution correctness was checked us-
data values labeled with some label less restrictive than theing real hardware. Information-flow correctness was veri-

threshold label, the program outputs are identical for all g by manual inspection.
data values labeled with some label less restrictive than the During initial runs of the programs, we noticed that la-

threshold label. bels became extremely restrictive. Analysis revealed that

Intuitively, the definition states that a program is secure this was due to the stack pointer becoming restricted upon
if nothing can be learned about confidential inputs by look- the execution of a branch guarding procedure calls. Using
ing at public outputs. The binary translation guarantees this2dditional analysis to show that the stack pointer is the same
through its management of security operands. Consider thefter the execution of elth_er path (Wlth the exception of pro-
execution of the secured binary with the two program inputs 9ram termination dealt with as described earlier), the more
used in the definition of a secure program. Any instruc- aggresswe,_yet still conservative, system produced Iz_abels in
tion which produces output will be run in both programs or the output file as expected. For example, whervibeutil-
will be control dependent on a label more restrictive than Ity Was run on a variety of files each marked with different
the threshold. The control dependence implies the output!@P€ls, the output describing each file was marked with the
will carry a label more restrictive than threshold. If both file’s label, while output describing summary data about all
programs execute the output instruction, the data values ardiles was marked with the join of all the files’ labels.
equal or the data value is the result of an explicit or implicit ~ We will present an analysis of two applications, PGP and
flow of information from inputs with labels more restrictive thttpd, to illustrate how information-flow security can be
than the threshold. Since the binary translator converts allused in practice, show that RIFLE is not overly restrictive,
implicit flows to explicit ones, and the architecture tracks demonstrate potential security vulnerabilities, and identify
explicit flows, the label of the data being output must be areas of future research.
more restrictive than the threshold. Therefore, the trans-
lated program running on a RIFLE architecture is secure. 6.1.1. PGP
6. Evaluation Pretty Good Privacy (PGP) is an application for public key
cryptography. PGP maintains a public-key ring and private-
key ring. Users can request that a file be encrypted, de-
crypted, or digitally signed using one of the keys in either

To guide the design of an instantiation of the abstract
framework just described, we measure the properties of un-

modified assembly files from a type-unsafe language. Ita- . ;
nium 2 assembly files were obtained from the IMPACT ring. To test PGP, we created a pair of key rings and labeled

. . L each key in the rings with a unique label. We also labeled
C compiler using standard optimizations. These assem- Y 9 q

bly files were then annotated using the binary translationthe.Input file Wlt.h a unique label. We _th.en ran PGP Wl.th
techniques described earlier. Rather than using an arbi-()pt'onS so that it W.OU|d encrypt and digitally sign a plain
trary number of security oper.ands per instruction, the ISA text file. We examined the Igbels of the re§ult|ng output
was extended to sUpport only one security operémd Ad_1‘|Ie..We e>§pected the output file to Iabe'led with the join of
ditional join instructions were inserted to combine seéurity the nput file label, the label of_the public key used for_ en-
operands on instructions that initially had more than one c_rypt|on, and_t_he label (.)f the private key used forth_e d|g|_tal

. S . " signature. Initial experiments showed the output file being
To reduce the number of inserted join instructions, we per-

X X o labeled with the labels of not only the key used for encryp-
formed classical compiler optimizations such as constant W y yu yb

foldin nstant or tion ; tion. comm ntion and signature, but also of all the keys that appeared be-
0'ding, constant propagation, copy propagation, COMmon ¢, .o \hem i the keyrings. Examination of the code revealed
sub-expression elimination, and dead code elimination.

We evaluated the Unix utilityc, thitpd , and several this to be_ the correct behavior. The coo_le that re_ad keys from
C benchmarks from SPEC Integér 2000 e;nd MediaBenchthe keyrllng had to scan over the keyring until it found the
benchmark suites for correctness, conservatism, and perfor.fj1 ppropnate key. Each encounte.red key was checked to see
mance ' ' if it was the requested key, and if so, exited the loop. This
' loop structure forced subsequent loop iterations to be con-
6.1. Verifying Program Security trol dependent on the exit condition of prior iterations.
To overcome this label creep, we relabeled our keyrings
To evaluate program correctness, all benchmarks weremaking all key identifiers and key sizes share a single
run on our 1A-64 functional simulator augmented with the unique label. Key sizes were relabeled since keys are vari-
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able size and the size of the current key is needed to locate 1 e co——

the subsequent key. With these modifications, we reran PGP m";'_-'—+

and the new output possessed the expected labeling. o o8l Wmfm N |
£ e

6.1.2. thttpd £ 6l R ]
o ¢ v VY X

thttpd is a tiny web server application. For the experiment g ’ @mm 164.gzip -

we configured the web server with two documents. Each © 04 ¢ o MO

document was password protected. We exercised the web2 QQEM 186.crafty ©

server with four requests, two per file. One request per file £ oo « « &~ 25”&‘}32% .

was submitted with the correct password, the other request B e thited >

per file was submitted with an incorrect password. Each re- 0 g & e ‘ mpeg2dec -

guest and document was uniquely labeled. The password 1 10 100 1000 10000

file, which consists of user names followed by fixed length Overlapping Live Ranges

passwords, had two unique labels per line; the user name
was labeled differently from the password. As expected, Figure 6. Overlapping security register live
running thttpd revealed that the responses to the unautho- ranges

rized requests were labeled with all the user name labels

in the password file (since the whole file was scanned) and

the request label. For the authorized requests, the responses | poute Cache
were labeled with the the label of the request, the label of 2 - I Ol Cocte |
the document, the labels of user names up to the authorizedé 9 L _
user’'s name, and the label of the password. While this ac-~

. . . . = r
curately characterizes the information that was examined to g I
Q

produce the response, it may mislead a server administratoFg 1
to believe that responses are leaking passwords. In actuality,s
only one bit of information about the password (whether the
password was correct) is leaked. Future work will examine

. . .. ; 3 S & " & o
how to inform users of how much information is leaked and @ﬁ? ,\@-*Q > Q@“‘“ Q&” R Q&éo &\x@ < é,ob@
study methodologies to allow declassification. D I G SR S

Figure 7. Performance of secured programs
6.2. Performance

machine with all of the data caches for Itanium 2 duplicated
To evaluate the performance cost of implementing RI- to store security labels. The second bar for each benchmark
FLE, we measured the number of overlapping security reg-shows the normalized runtime when the benchmarks were
ister live ranges prior to register allocation and the executionrun on a model whose data cache was partitioned into two
time of secured programs relative to the original unsecuredequally sized pieces whose total size is equal to that of the
programs. All performance measurements were run on ajtanium 2. As the graphs indicate, the runtime performance
validated cycle-accurate Itanium 2 model with RIFLE ex- penalty for the system is relatively low. The additional se-
tensions built in the Liberty Simulation Environment [32].  curity instructions do not incur a significant performance
Figure 6 shows the number of overlapping security reg- penalty since these instructions are independent of the orig-
ister live ranges. For a given number of overlapping live inal program instructions and therefore can be executed in
ranges, the graph shows the percentage of execution timgarallel, if sufficient resources exist. Additional compiler
spent in functions with fewer overlapping live ranges. As is optimizations will reduce this penalty even further.
shown in the graph, for most benchmarks more than 70% of
the execution time is spent in functions with fewer than 100 7, Conclusion
security registers live. Future work on additional compiler
optimizations to reduce register live ranges may have the Information-flow security allows users to maintain con-
potential eliminate register spill and fill code, and therefore trol of their data while still permitting untrusted applications
to significantly boost the performance of the system. to access the data to perform useful computation. Typically,
The execution speed of the secured programs, relativethese information flow security schemes are built as exten-
to the base is shown in Figure 7. The first bar for each sions to type-safe languages where security is verified stati-
benchmark shows the secured programs’ runtime normal-cally by the compiler. In such schemes, control over policy
ized to the runtime of the unsecured program running on adecisions and policy enforcement is in the hands of the pro-
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grammer. This approach has been the main research focug13] Intel Corporation. Web site:
because static information flow systems were believed to be http://www.intel.com/technology/security/downloads/

. LT _Arch_Overview.pdf, February 2004.
more secure than dynamic systems. 14] B. W. Lampson. Protection. |IRroceedings of the 5th Princeton

. L . [
In this paper, we present RIFLE, a runtime information Symposium on Information Sciences and Syst&aL.
flow mechanism that is as secure as existing static schemes[15] B. W. Lampson. A note on the confinement proble@ammunica-

: ; : i ; tions of the ACM16(10):613-615, 1973.
However, unlike static schemes, security decisions are in the [16] W. Landi. Undecidability of static analysisACM Letters on Pro-

just those written in special languages) and policy decisions [17] Lavasoft. Web site: http://www.lavasoftusa.com, January 2004.

: [18] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an un-
are left to the user not to the programmer. We Implemented trusted operating system on trusted hardwarérbteedings of the

RIFLE and demonstrate the pgrformance cost for security is nineteenth ACM symposium on Operating systems principiges
reasonable. Our implementation also demonstrates that RI- 178-192. ACM Press, 2003. '
FLE successfully tracks information flow and can be effec- [19] D: Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. C.

tivel d by end rs to man their confidential dat Mitchell, and M. Horowitz. Architectural support for copy and tam-
€ly used by end-users to manage their co ential data. per resistant software. lArchitectural Support for Programming

Languages and Operating Systemages 168-177, 2000.
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