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Abstract most common threat to system security [19, 5]. Aside from
intrusion prevention, the research community has addressed
Preventing execution of unauthorized software on a this problem from two perspectives:

given computer plays a pivotal role in system security. The ¢ |ntrusion detection- a set of mechanisms that aim at

key problem is that although a program at the beginning of scanning system resources and detecting the activity of
its execution can be verified as authentic, its execution flow potentially intrusive agents [5].

can be redirected to externally injected malicious code us-

ing, for example, a buffer overflow exploit. e Formal verification- a set of formally defined methods
We introduce a novel, simplified, hardware-assisted in- that either change the definition of the programming
trusion prevention platform. Our platform introduces over- language so that executables are impervious to buffer
lapping of program execution and MAC verification. It par- overflow attacks [16], or perform static analysis on bi-
titions a program binary into blocks of instructions. Each naries to verify that they do not have buffer overflow

block is signed using a keyed MAC that is attached as a exploits [10].
footer to the block. When the control flow reaches a partic- ) ) )
ular block, its instructions are speculatively executed, while 1.1. Intrusion Prevention - Previous Attempt
$Ed|cated hardware verifies the attj\gheq MAC atlru_n—ume. Intrusion prevention systems aim at forcing the adver-

e computatlon Ztlat(.e |s*§)r?fservle dugng specuhatlve exe'sary to solve a difficult problem, preferably intractable, in
cution using a mediating buffer place ) .etW_ee” the proces-, qor to be able to run a program with desired functionality
sor and L1 data cache. Upon MAC verification, the results

. .~ on the target computer.

from this buffer are propagated externally. Central to this

aper is the proposal of a novel optimization technique that Recently, Kirovski et al. introduced a computing plat-
Paperis Propo . P i 4 form that enables intrusion prevention [8]. Their platform,
initially identifies instructions that are likely to stall exe-

. . o . . SPEF, uses a framework of architectural and compilation
cution, and reorders basic blocks within a given instruc-

tion block to minimize the execution overhead. While the mechanisms to ensure software integrity at run-time. Dur-
A ) ) © ..~ ing software installation, SPEF computes a keyed message
presented optimization technique is problem specific, it is

. . . . e authentication code (MAC) [1] for every block of instruc-
f!eX|bIe such tha}t '.t can be adjusted for different opt.|m.|za- tions. The MAC is encoded within the associated block
tion goals. Preliminary results showed that our optimiza-

tion methods produced an average overhead reduction ofOf instructions. The MAC is keyed with a key unique for

. . a given processor. The key is burnt-in and not accessible
0, -
gSa/IO ;&g‘; SPEC2000 benchmark site and Microsoft Vi to any application except the software installer. The soft-

ware installer operates exclusively in a single-process mode
1. Introduction which cannot be accessed or interrupted by any other sys-

tem or user process. At run-time, each block is verified for

The key problem to security of modern computing sys- integrity by decoding its MAC and verifying that the exist-

tems is that although a program at the beginning of execu-ing block corresponds to the originally signed data.
tion may be verified as authentic, while running, its execu-  The platform proposed by Kirovski et al. has three im-
tion flow can be redirected to externally injected malicious portant disadvantages. First, its MAC verification mech-
code using, for example, a buffer overflow exploit [20]. anism is complex. Second, due to block preprocessing
Once the adversary executes injected code in the highesand MAC decoding and verification, their system imposes
trust mode, usually all system resources are at her disposala clock cycle penalty approximately three times the cycle
Ease of implementation and effectiveness have establishedount required to verify only the MAC. Finally, the verifi-
attacks that focus on redirecting program execution as thecation hardware is on most processors’ critical paths, e.g., it
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intertwines with the instruction buffer, scheduler, and pos- new I$ line is loaded and while the verification hardware
sibly with the L1 I$; hence, it can cause relatively high per- processes the new entry, the processor executes the freshly
formance overhead on super-scalar and pipelined machinedoaded instructions. In case of a write to external memory,

1.2. A Simplified and More Effective Platform if the current I-block is not verified yet, the processor stores
. i ) ) the value and address into a mediating FIFO buffer. If this
In this paper, we propose a new intrusion prevention sys-

h ine th . : hile sianifi buffer is full, the processor stalls until the current I-block
tem that retains the security aspects of SPEF, while SI9NMis verified. Upon verification, all values from the mediating

cantly improving upon its performancg overhead_. The baSICbuffer are propagated into the external memory space. An
components of the new system are illustrated in Figure 1., 44iiona| constraint is that control flow from one I-block

The ZySt'erTSSF?ElIJ:me m%chamsm is similar to tt)?e one pro; cannot be transferred onto another until the verification of
posed wit - In-order to run an executable in one of o o\, rrent |-block is completed. Consequently, a processor

fche protected modes, a prlvneged user of the _system mUStmay stall its execution due to a full mediating buffer or due
install the executable. During software installation, the exe- ;- - early exit of the control flow from the current I-block
cutable is partitioned into atomic execution units — instruc- '

tion blocks (I-blocks). For each I-block, the installer com- —— . eI
putes a keyed MAC [1] and attaches it as a footer to the e Storege_compuatn rave
I-block. The size of the I-block is such that when the MAC || P hercarons pop " | ||| “ihe 05. Protets user cats
. . . . from other users. Protects
is attached to it, its total length does not exceed the size of a Gounioaded fram e ernet, ||| | system data rom users

scripts, fast computation with
no need for security. User Mode  System Mode

execute speculatively until

single line of the L1 I$. As opposed to SPEF, the new sys-

tem does not reduce the code size overhead by storing bits R e oute speclatvely

of the MAC in the I-block [8]. s analomic P
Once the protected binary is created, it can run in one L]

or more protected modes allowed by the operating system | Protsqes program

(OS) for a given user (Figure 1). The protected binary is ex-

ecuted by following the normal control flow. The integrity

L1 data
cache

.< Processor

Instruction
Keyed MAC buffer

Run/Abort ’7
Mediating
Software : T | buffer

of executed instructions is verified on-the-fly for each I- L1 instruction cache

block freshly uploaded into the L1 I$. A single I-block

is considered an atomic execution unit because even in the Flag —"Sae o Exeouts”  Cache e

case when only a single instruction is executed from a given Hardware Verification

I-block, the result of this instruction is not propagated to
the computation state that resides outside of the processor
until the entire I-block is verified. After the I-block is ver-
ified, the results of speculatively executed instructions are The second optimization mechanism is a post-
committed. In case the integrity check fails, the processor compilation step. Using a novel profiling methodology, we
aborts the current process. Details on the adopted computabuild an execution model that guides the relocation of basic
tion model can be found in Subsection 2.2. blocks within a binary so that performance of the program
The OS uses our platform to ensure that users are nowithin the new architecture is optimized (Section 3).
able to switch either from their assigned user mode into an-  The adversary can operate either remotely or locally. In
other, higher security level mode or to impersonate otherthe first case, she scans the remote computer’s ports for net-
users. The developed system represents a fundament for sevorking services with known security flaws and then pen-
cure execution of programs as it can police the crucial two etrates the system using these flaws. In the second case,
trusted modes on a given platfortnusted OS kernel mode the adversary is already running a program on the remote
which cannot be accessed by any user and all variants ofkystem, but not in the desired mode. Thus, she can use the
user modegprivate and shared). Software that is not pro- vulnerability of any system procedure already running in
tected, can still run on the computing machine but not in the top priority mode and try to subvert its execution flow

Figure 1. Main components of the proposed
intrusion prevention framework.

the protected modes. It can only run in a distrugbed- towards a desired malicious procedure. The most common
lic mode OS modes are described in further detail in [8], type of such attacks are buffer overflows. For example, the
Subsectior§l.2. simplest buffer overflow attack, stack smashing [20, 19],

In this paper, we also focus on techniques that reduceoverwrites a buffer on the stack to replace the function call
the performance overhead of the above system. Softwareeturn address with the address of the injected malicious
optimization in our platform deploys two main mechanisms procedure. We refer the reader to [8], Sectidnfor fur-
to improve performance of software executed in protectedther details on the attack model.
modes. The first mechanism is hardware-assisted specula- It is important to stress that our system doespretent
tive execution (Figure 2). When an L1 I1$ miss occurs, a nor detect buffer overruns. Thus, techniques with such a
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goal (e.g., StackGuard [5]) can be used in conjunction with world. We assume that the MAC is robust with respect to
our platform. Our platform prevents the adversary from ex- known-text attacks [1].
ecuting a single line of her code in a protected mode. Our  Secure MACs can be built by pipelining anbit block
platform forces the adversary to jump into binaries that are cipher in a CBC-MAC mode (see [1}9.58). The input
already running in protected mode and feed them with de- string is partitioned intm-bit blocks, each block is XORed
sired data to perform malicious actions. By (re)loading pro- with the output from the previous stage and fed as input to
grams at random locations in operating memory, this taskthe current stage in the pipeline. For this purpose, we adopt
can be made difficult. a 128-bit Rijndael cipher. An exemplary ASIC implemen-
2. System Details tation of this cipher loads into its pipeline a 128 bit word

) every cycle with an initial latency of 14 cycles [2]. Assum-

In this section, we review and discuss the basic compo-ing an eight byte L1 I1$ to L2 $ bus, we adopt the following

nents and assumptions of the our system. latency model for our verification hardware:

Software delivery. Two essential procedures associated L1 18 line size
with software delivery are: initial installation and updates. tp =14+ ———— """ cycles. (1)
An application is distributed to users as a compiled binary - 128 bits

we denote it as theaster-copy A recipient of the master- Fora256B L11$ line, the expected delgyis 30 cycles.

copy validates its authenticity via standard public-key au- Not all of the resulting 128 bits of the MAC need to be used.

thentication methods [1] or proof-carrying codes [18]. The Alt t]t]e cost of rﬁduced, however,b still sftrohng seqlurti)tly, our
master-copy can run in a protected mode only after it is in- Platform may chose to use a subset of the available 128-
stalled. We denote this copy as therking-copy which bits. Security !mpllcatlons of such a decision are beyond
is functionally equivalent to the master but augmented with the scope of this paper.

processor-specific MACs for each I-block. The same pro-  Attaching the MAC to an I-block. ' MACs can be at-

cedure is performed for protected software updates. ta&heg to (;'t_)IOCkS In §evera|_way§[) e_s a footer tﬁ the
Processor-unique secret key - CPU IDThe root of sys- I-block and insert an instruction that circumvent the con-

tem security is a read-only register with a secret key that is]tc_rlOI flg\;‘v atr)(lnunlg ,the MAC;;‘Q Ergate a sepgrglte.d assou.ated

unique for each processor. Kirovski et al. discuss the non- lle wit _I' OCKS MACs which is accesse. uring run-time

impact of CPU ID on user privacy ([8], Sectig.1). verification using a secure CO-processor; a_md {o have
Software installation. Software installation consists of ~ardware support in the form of an automatic update of the

several steps illustrated in Figure 1. First, the processor enprog[)allm l::ount(re]r cl)nce it hits ;he last Vl";ble 'nStrIléCSO” n
ters a specidhstallation moddi-mode). Ini-mode the pro- & I-block. In the last case, the control flow would be au-
cessor augments a given master-copy with processor-uniqu{:omat'ca”y transferred to the first instruction in the I-block

MAGCs, stores the resulting working-copy in system's mem- qcate_d_ consecutively in the yirtual memory. For co_nceptual
ory, and finally, exits i-mode to return control to the caller, simplicity, we assume the third alternative as a basic control

the OS kernel. The CPU ID, as a system's master secret]|OW Mmechanism.
Key management. In order to enable user protected

must never leave processor’s pins. Since the installer must S o
access the CPU ID to create the working-copy, i-mode en-modes, a distinct secret key must be used for every individ-
sures that the CPU ID is kept secret from soft and mostual user. In addition, a given program intended to run in a

hardware attacks. This is done by following a simple recipe: protecte_d mode must be installed for all users individually.
(a) installation is executed atomically, i.e., without any in- All restrictions related to secrecy and privacy for CPU ID

terrupts, b) the installer must not write the CPU ID or any management discussed earlier in this section als_o apply to
other variable that discloses plain-text bits of the CPU [D USer keys. Hence, we assume that the processor is using an
off chip, and €) before completion, the installer must over- externa_l non-vol_atlle memory to_ store the user keys. When
write all intermediate results or variables stored in on-chip & USEr IS €xecuting a program in protected mode, the pro-
memory. An example of steps that a processor should fol-CESSON' 1S .respon5|ble tq load th_e appropriate kgy from the
low to enter and exit i-mode is given in [8], Sectigh?. key—sto_re in orde_r to verify the binary. User versions of the
. . same binary are instrumented on-the-fly before program ex-

2.1. Cryptographic Primitives ecution from a file which contains MACs for each (I-block,

Our platform has only one cryptographic primitive, a user) pairing. This action is done by the OS in the highest
keyed message authentication code (MAC). The purpose ofaccess mode. For brevity, we present results as if only one
a MAC is to facilitate, without the use of any additional key, the CPU ID, is used in the system.
mechanisms, assurances regarding both the source of a me
sage and its integrity [1]. Our platform does not require
public-key signatures [1] because it operates under the as- In this subsection, we review the computation model
sumption that the CPU ID is never disclosed to the externalused to demonstrate how our platform works and quantify

¥.2. Computation Model
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its performance characteristics. Basic components of theto its execution. Just as with the 1CPI computation model,
computation model are presented in Figure 2. Since thethis assumption puts an upper bound on the performance
atomic execution unit is an I-block, we model all relevant overhead. Delay due to L1 $ misses is modeled as follows:
events related to fetching and executing an I-block. .

First, we define a-block as a sequence of instructions tg = m cy
the length equal to the system’s L1 I$ minus MAC's length. 128 bits

One I-block contains at least a part of one basic block. Gen- .\ o ccime an individual 128-bit bus between both

:;a:_i)l(gcelftg'r?g tlasats(?cht?I\cl)eciecvaeg? baansg:c?(l)oscskz:ggtramg:je%he data and instruction L1 $ and the L2 $. We also assume
blocks ' P that this bus is operating at a clock rate four times slower

“Safe to than the processor clock.

execute” flag

cles, (2)

) paccdpspichions) \ G load instruction | from memory address indexed
Gf;bl'_tzbsf‘s A by processor’s program counter (PC)
™ if data fromm is not cached in L1 I1$
% wait tg due to 1$ miss
verify MAC(l) of new I$ linel
if 1is critical according to criteria (ii—iii}
if MAC(I) is not verified
wait until MAC(I) verification done
if MAC(I) is invalid then abort process
execute |
if | produces a memory write
if MAC(I) is not yet verified
if mediating buffer is full
wait until MAC(I) verification done
address if MAC(]) is invalid then abort process
critical elsewrite data, mem-address to mediating buffer

|50 elsewrite data to L1 D$
read write? if MAC(l) verified, mediating buffer non-empty, D$ idle
iz | Mediating write data from mediating buffer to L1 D$

write bus FIFO increment PC with smart skip of MAQ(]
| »{ buffer

CPU stall

write Table 1. Control flow in a processor enhanced
L1 Data $ y LiData$ with our platform.

Figure 2. The computation model encom- ) )
passes the L1 | $, the processor, and the cryp- A processor enhanced with our platform executes in-
tographic unit. structions following an algorithm described using the

pseudo-code in Table 1. According to the 1CPI computation

We adopt the single clock cycle per instruction (LCPI) model, the flow in Table 1 is assumed to last one clock cycle
model which assumes that one instruction is issued, fetchedunless the processor ends up in one ofitlaé states. In ad-
executed and its result sent to a memory write buffer in a dition, I$ lines are verified only after being fetched into the
single cycle. Although this model is restrictively simple, 1$. A single “safe to execute” bit attached to a cache entry,
it captures well the performance of modern pipelined and is sufficient to denote this information back to the processor.
super-scalar processors such as the Pentium IV [4]. The The computation flow also refers to critical instructions
model does not account for the delay required to load pro- (referral denoted a#). A critical instructionas an instruc-
cessor’s pipelines after an L1 I$ miss is resolved. Sincetion that can cause a processor to stall. Such instructions
both platforms with and without MAC verification experi- include:
ence this additional overhead, realistic performance over-
head is upper bounded by the 1CPI model. The design ten-
dency past several decades has been to increase the numbéii) all conditional branches and jumps onto non-cached

() all memory writes,

of issued instructions per clock cycle, with recent proces- addresses, and
sors experiencing strong sub-1CPI performance. A fixed (jii) the last instruction in an I-block that precedes the
delaytp due to MAC verification would affect these sys- MAC.

tems more dramatically. The expectation is that more gates
available for the MAC verifier would speed up its operation
as well.

Our second assumption is that the size of the L2 $ is infi-
nite and that the entire program is loaded into the L2 $ prior

Performance improvement techniques such as pre-
fetching, out-of-order execution, etc., may impose adverse
effects on our platform. For brevity and conceptual simplic-

ity we disregard this issue which should not be neglected
with all considerations for practical implementation.
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Exec. Basic Block Level Profile
SPEC | time Total Live Significant | W/ Write Branch Mo [%] [2—2]<02

[sec] Blocks | count | [%] | count | [%] [%] | Taken[%] || > 0.3 | < 0.1 [%]
gzip 177 4832 1633 | 33.8 951 | 19.7 33.5 34.6 9.3 73.8 8.4
vpr 231 10495 2052 | 19.6 502 4.8 34.1 13.8 5.3 94.1 4.1
mcf 263 3971 1411 | 355 583 | 14.7 28.7 18.6 2.8 97.2 1.4
perlbomk | 167 43075 | 15928 | 37.0 | 11498 | 26.7 36.0 12.2 3.4 88.9 33
vortex 159 25513 | 12217 | 47.9 7506 | 29.4 25.3 25.2 0.7 97.3 0.6
bzip2 209 4449 1793 | 40.3 1009 | 22.7 30.9 36.0 2.9 94.3 29
twolf 425 14671 5765 | 39.3 3669 | 25.0 39.1 32.7 2.2 95.7 1.6
FoxPro 6 363937 | 30216 8.3 2203 0.6 253 27.8 6.2 82.4 5.0

Table 2. Basic block and instruction level profile of SPEC2000 benchmarks and Microsoft Visual
FoxPro. The columns display the total number of basic blocks in a binary, actually executed
blocks(“Live”), blocks executed at least 100 times (“Significant”), percentages of blocks with at

least one branch instruction and taken branches. Last three columns represent the effect of A pa-
rameter: the ratio of number of branch toggles ( \) vs. total number of executed blocks (  «) greater
than 0.3, smaller than 0.1, and with g — %\ smaller than 0.2 respectively.

2.3. Program Profiling 3. Software Optimization for Intrusion Preven-

In order to position the optimization goals, we adopt a tion Platform

program profiling method which models relatively accu- In this manuscript, we focus on software optimization
rately the optimization problem. We use the SPEC2000 techniques that aim at remedying the performance overhead
benchmark applications and Microsoft Visual FoxPro com- due to run-time MAC verification. The main optimization
piled for the x86 instruction set in order to demonstrate the technique is centered on relocating basic blocks so that once
effectiveness of our platform. Instructions in this set are a new I$ line is loaded, the control flow within this line

of variable length, hence, we use rescheduling and NOPreaches a critical instruction of type (ii-iii) after at least
padding to ensure that no instruction is spread over two I- clock cycles. Another goal is to minimize the number of
blocks. The profile is computed dynamically using data-sets speculatively executed writes to memory before I-block’s
provided with our benchmarks. The profile information is MAC is computed. Since relatively small mediating buffers
collected for each basic blodk and encompasses: managed not to overflow on memory writes in most appli-
cations which we executed on our platform, we scaled ap-

o(bi) —number of times; executed, propriately the importance of this optimization goal.

B(b;) — number of times a branch at the endbpfwas re- First, we formally define our optimization goal. For a
solved as true, given setB of N basic blocksB = {by,...,bx}, we seek
~(b;) — aflag denoting whethéy is a self-looping block, for their permutationr =< b7 ... 0% > which minimizes

. ) L o _ the following delay metric:
d(b;) — index of the first critical instruction ih;, assuming

its critical nature is due to criterion (i), Moaory P
. . . . U arg minz ¢:) Z oI, py) - limit [tp — (15, p5)], 3)
A(b;) — if b; ends with a conditional jump, we record the T o el o
number of times the decision reached by that branch o {0, z<o0
toggled in the subsequent run, limit(z) _{ @ , otherwise °

x(b;) —we record the average block self-execution distancewhere¢(_ri) anda(I;) are the total number of cache misses
(bseg: a number of cycles passed until the same block ang executions respectively for I-blodk, M is the total
executes again. number of I-blocks in tiler, andZ; is an individual I-block

from the tiling. We define a set @intry pointsof an I-block

as a subset of all basic blocks within an I-block that have

preceding points in the control flow graph outside of the I-

block. If an I-block contains only a part of a basic block,

this part is treated within this I-block as a separate basic
block. We further denote aB the set of all feasiblerit-

The complexity of collecting this profile per block is
O(1) by using separate counters far 5, and\. Param-
etersv, 4, and X require an additional flag. Parameter
requires two registers, one to store the cycle count of its last
execution and another to store the sum ofbslédoccur-

rences during program’s execution. While R § . o .
g prog e ..., A} ical paths P = {py,...,pp|} Within the internal control

profile is a standard way of modelling program execution, to . . . .
the best of our knowledge, we are the first to propose basicfIOW graph of a given I-block. A critical path is a path in

block relocation algorithms based on block self-execution the control flow_graph O.f an_l-block suph that there exists
distance. exactly one basic block in this path which contains at least
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one critical operation. The first basic block in a critical path
must belong to the set of entry points. Parametgt, p,)

in Eqn. 3 denotes the number of times pathe I; exe-
cuted in the profile. ParametéfI;, p;) quantifies the tim-
ing in cycles before the first critical instructionin € I, is
reached.

cag

ST

Figure 3. An example control flow graph at the
basic block granularity.

3.1. Optimization Trade-offs

In order to address the optimization goal, we first review
the most important trade-offs involved in making reloca-

tion decisions that affect performance at our platform. The
main trade-offs are discussed using an example control flow

graph in Figure 3. First, we introducecanstraint p(b;)

of a basic blockb; as a heuristic quantifier that measures
the performance overhead tliatan cause if relocated ran-
domly. We evaluate the dependencywfvith respect to
the collected profile and control flow graph. Intuitively, fre-
guently executed basic blocks () as well as basic blocks
terminated with a branch that cannot be predicted accuratel
(I8/a—1/2| | andX 1) should be considered of high con-
straint. In addition, self-looping blocksy (= 1) which do
not contain a critical instructiory (= 0) should have lower

constraint because they cause large number of instruction

to be executed before any critical operation is issued. Basi
blocks which contain a critical instruction of type (i) early

on (b |) are treated as constrained blocks. Basic blocks

with low bsed(y |) execute often in bursts, hence, should
be relocated with more attention. In order to quantifipr

a basic block, we have empirically derived the following
metric:

(-1)f Mg

(e a (e 22 (e )
where constant€’'s, Cy, andC,, all equal one, function
f(9,7) returns 1 if6 = 0 and~y = 1 and zero otherwise,
and y denotes the average computed over the subset of
all basic blocksB which are not self-looping and which are
executed at leadl.1 - maxp(a) times. For basic blocks
executed less thah1 - maxp(«a) times,x/x is set to zero.

Different trade-offs for basic block relocation can be ex-
tracted from the control flow graph (CFG). Consider the

()
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CFG illustrated in Figure 3. Nodes denote basic blocks and
edges denote potential control flow between nodes.
FFF — frequent fan-in and fan-out concatenation.Block
A has blocksD and E as its fan-out, and it has block3
andC as a fan-in. Assumingl has a low\(A)/a(A) with
most of the control being swayed towarB)s then there is
an intuitive demand to concatenateand D into a common
I-block. Similarly, for3(B — A) > (C — A) we would
want to concatenat8 and A. However, notice that in case
the other fan-outbranch @ is 3(B — A) < (B — H),
then according to the same heuristics, it is better to concate-
nateB and H as opposed tal.
CAC - cache anti-collusion.f B — A — D is a common
route in the program profile and the three blocks cannot fit
one 1$ line, then on the average, program performance is
not affected if the three blocks are stored in two different
I-blocks in memory that map to non-colluding cache lines.
This heuristic follows the results obtained on program hot
subpaths [17].
TB —toggling branches.In the case when the control flow
after block A relatively equiprobably §(4) ~ «(A)/2)
and unpredictively X(A) =~ «(A)/2) branches out td)
andE, it is beneficial to store all three blocks in a common
I-block or if this is not possible due to block size, into two
non-conflicting I-blocks.
CSLB - constrained self-looped blocks. A self-looped
block F' with memory writes is particularly sensitive to re-
location because of the high likelihood that the mediating
buffer overflows whenF' is an entry point to an I-block.
We place non-constrained blocks precediigsuch asz,
into the same I-block to mask the verification delaywith
nstructions that can be speculatively executed at no delay
cost.

The trade-offs for early avoidance of critical instructions
mash with the challenge of relocating basic blocks for cache
miss reduction, a problem which is well studied [14, 3, 13].

CWe address the two problems jointly, from both the problem

definition and solution perspective.

3.2. Optimization Problem Definition

INSTANCE: Given a sequence of instructions broken
into NV basic blocksB = {b,...,by}, program CFG and
profileb; : {«, ..., x}, I-block size, T € R.

QUESTION: Is there a reordering of basic blocks=
(bT ... b%) such that partitioning of the new sequence into
M 1-blocks yields limited cost:

M I E; L o
T< ; L(EL) X k:la(Ii,p?) - limit [tD - (5(11'7??) ) (5)
H(L) = =" q(lw)logs(a(1w)),  (6)
=1
aIw) = alby),  (7)

i=1

YF]',F.
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where M is the total number of I-blocks that tile and I; an L1 1$ line. Next, it sorts all basic blocks B according
represents an individual I-block from this tiling. Set of ba- to the heuristic constraint model quantified in Eqn. 4. After
sic blocksE; represents the entry points for blo¢k We the algorithm sets = >, 5 a(b), it enters a loop which
further denote a#’; ; the set ofL most likely critical paths ~ sequentially processes those blockgsimvhich account for
P = {p}, o ,pf} of I,. Usually, L € {2,5}. Set of large percentage ef, (typically 90-95%). Assuming that
pathsP; ; is computed based on the propagation ofédhe  large number of basic blocks are commonly not executed in
metric within the program control flow graph. Parameter a binary, the number of blocks that remain at this point is
a(Ii,pf) in Eqgn. 5 denotes thexpectechumber of times  significantly larger than the blocks already processed.
pathp’; in I; has executed in the profile. This value is quan- ~ Within the loop, the algorithm selects the most con-
tified based on the expectation collected from the programstrained basic block according to they metric. Since this
profile. Parameted(-) quantifies the timing in clock cycles  block is constrained, it is likely to be of type TB or CSLB
before the first critical instruction ip? is reached. Finally, (see Subsection 3.1). In both cases, a solid heuristic is to re-
H(I,) is a heuristic quantifier that models the likelihood of view the fan-in ofh and merge all blocks in the fan-in with
a cache miss. For a given I-bloék we identify a subset of  into one I-block such that paths starting from all entry points
I-blocks I,, that map to the same I$ line. For each of these in this block have sufficient depth before a critical instruc-
blocksI,,, we compute the sum(I,,) of a(b,) parameters  tion of type (ii-iii) is executed. If this cannot be achieved
over all basic block$, in I,,. Thus, we computél (I;) as for some path, then we concatenate blocks from this path
the entropy of these sums. The rationale behind this sim-until the current I-block fills. This step aims at satisfying
ple predictor is that cache lines that have large number ofthe optimization constraint for the most constrained basic
blocks that are equiprobably executed yield higher entropy block.
and thus, higher likelihood of a cache miss. The optimiza-  |f the current I-block is still not full, we can additionally
tion objective quantified using Eqn. 5, aims at modeling the concatenate blocks from the fan-outiof Within the fan-
delay due to run-time MAC verification as well as system’s gut, we select a basic bloekwith the highest value op
L1 1$ misses. It can be shown that the above problem is NP-gnd which is not an entry point itself when added to the
complete because instruction (or list) scheduling, which is collection of blocks already merged with Since all paths
already NP-complete, can be reduced to it. that lead tov are longer tharp, then in this step we want
3.3. Optimization Algorithm to merge blogks of the hig_hest gvailab!e _co_nstraint from the
fan-out. The intuition behind this heuristic is to resolve the

In order to address the difficult problem posed in the pre- ,ost constrained components of our problem space using
vious subsection, we have created an algorithm that reIies[he least-constraining location in an I-block.

on a fast most-constrained least-constraining heuristic. The We include the hot subpaths heuristic [17] (or CAC) in

p.”rE? OEJIG ctlvet ::)hefllnq t.h e.Opt';?l'z?:OS itofcr)l ';Ef;ln%a_ﬁ?' this step by concatenating basic blocks until we encounter
zllc oric:r?m ?ggzscrﬁ)erg:?:etie esej do?co%le ianébIé 3 € ablock which contains a critical instruction that is executed
g 9 P *for the containing I-block before the projected verification

createM empty I-blocksly, ..., Ins delayt . In that case, we undo the schedule for that I-block.
denotel = UM, I,

sort B in decreasing order of In order to optimize the relocation of basic blocks, we
a0 =Y ep ab) place the resulting collection of basic blodkinto one or
while 3=, g a(b) < 0.95a0 more I-blocks according to the following heuristic (this step
\ll’v's‘iIzzsr'gi?g;'ﬂngly)v;t};héghesw(b) is marked in Table 3 as). If the averagebsedof basic
find block v from fan-in with minimalp(v) blocks inb is small, we conclude that these blocks are exe-
mergeb = v||b cuted frequently in bursts. In order to avoid potential cache
Svrr‘]‘i‘l"ej’:”iz <maller than meimum 1block <ize conflicts, blocks fronb should be placed in a memory loca-
find block v from fan-out with maxima(v) tlpn that.does not map to the same cach.e.llne as theirimme-
and which is not an entry point when merged with diate neighbors. Neighborhood is quantified with respect to
mergeb = b||v the CFG, not the memory map of the original binary. In or-
ggg";h't'ﬁat best it (%) der to find potential suspect I-blocks, we identify the nodes
T—b in the CFG that are within the-neighborhood of the blocks
removeb from B in b. An e-neighborhood is defined as a subtree of the CFG
endwhile which contains nodes with a minimal shortest path to any
greedy positioning of blocks il for best fit in/ block inb equal tos hops. Usually is set within 5 and 10
Table 3. Basic block relocation. hops. Conflict I-blocks are identified as the ones that con-

The algorithm initially reserves memory space for the tain at least one block from theneighborhood of blocks
resulting instrumented program as a multiple of the size of in b. Blocksb are relocated to the first I-block that does not

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY



map to a memory location that maps to the same cache lineXeon processor at 2.8GHz. We have compiled and opti-
as one of the conflict I-blocks. If conflict I-blocks cover all mized all but five of the SPEC2000 INT benchmarks due to
I$ lines, we select the first I-block that maps to a line in the our inability to instrument or sand-box these programs. We
I$ that has the fewest other conflict I-blocks map to it. also present the results for Microsoft Visual FoxPro. Static

Once the blocks fronB that account for 95% of all ba- and some parts of the dynamic analysis of the main pro-
sic block executions are placed in their I-blocks, we apply gram profile parametersy, . .., A} for the benchmarks are
an iterative improvement algorithm which relocates individ- presented in Table 2.
ual I-blocks such that the overall optimization goal from Our preliminary results presented in Table 4 quantify
Egn. 5 is improved. I-blocks are processed in decreasingthe performance of a system enhanced with our platform.
order of their cost from Eqn. 5. For each I-block, the al- We have run three system configurations: a traditional plat-
gorithm finds the most likely preceding basic block from form (I) optimized for L1 I1$ misses using the algorithm
the fan-in of I-block’s entry points and theprofile. If this from Subsection 3.3 denoted wik, without optimizations
block can be transferred to another memory location which (1), and with optimizations (Ill). We considered four L1
maps to a non-conflicting L1 I$ line such that the metric I$ configurationsA - 16KB/128B; B - 32KB/128B; C -
from Egn. 5 is reduced, the algorithm indeed relocates the16KB/256B;D - 32KB/256B, where the ratios denote L1 I$
I-block to this position. Otherwise, it continues evaluating size and its line length. Benchmarks with small L1 1$ foot-
the next I-block. If an I-block is relocated, costs are recom- prints (gzip, vpr, mcf, and bzip2) resulted in negligible exe-
puted for affected I-blocks and the algorithm backtracks in cution overhead due to run-time MAC verification. In order
the sorted list of I-blocks to the one with the highest cost to evaluate the effect of our system on more constrained
which was affected in the last step. By following this rou- platforms, for these benchmarks we used two smaller L1 I$
tine, the iterative improvement algorithm quickly converges configurationsty - 4KB/128B; andF' - 2KB/128B.
to a local minimum. In the last step of the algorithm, we use  Column 2 in Table 4 shows the total number of executed
the remaining blocks iB to fill the gaps between I-blocks instructions in billions. Columns 4, 5, 6, and 7 identify
which are only partially filled. the number of L1 I$ misses, the penalty due to processor

While the presented optimization technique is problem stalls in clock cycles, the ratio of penalties due to proces-
specific, it is flexible such that it can be adjusted for differ- sor stalls versus L1 I$ misses, and the percentage overhead
ent optimization goals. In cases when an architecture facili- that system Il incurs over system | due to processors stalls
tates “Critical Word First” cache line fetch, our platformin- for MAC verification respectively. The next two columns
curs additional stall cycles. However, additional optimiza- labeled “First Write” and “First Exit” contain the average
tion constraints can be applied such that critical words ap-number of instructions executed until a critical instruction
pear at the beginning of cache lines. Alternatively, commu- of type () for “First Write” and type {i-iii ) for “First Exit,”
tative MACs (where the order of the inputs does not affect is executed in system Il. The “IBS” column displays the
the final result) can be applied. number of times execution path switched between different
4. Experiments I-plocks in mill?ons. The next twg columns represent L} D$

i L misses and miss percentage with a single L1 D$ configura-

In this work, we have collected program profiles in-line, o g \vay associative 32KB with 1288 cache lines. The
v_vh|le execuyng bmanes. We Use‘?' tW(_) types of data collec- last two columns represent the overhead achieved by system
tlonf execution of |ns'trumen'ted 'blnarles' and process San_d'lll with respect to system | and thus, the improvement of
boxing. Instru_mentappn of _blnarles_ entails changing the_ bi- our code optimization techniques versus the overhead of the
nary layout with additional instructions. The role of the in- non-optimized system Il respectively. One can observe that

jected code is to divert the execution to the code that Up-he normalized average overhead reduction totalled 60.4%
dates counters of registered events. The execution is di-

g g | th hat d resulting in maximal overall overhead of 11.25% in only
ver'te toward an externa process with parameters t .at '€one case. In the majority of other cases, the overhead was
scribe the observed event. This type of data collection is

. negligible. The prototype optimization procedure presented
suitable for parameters that do not depend on the MEMONY Section 3 executed in less than 10 seconds for each pro-

footprint, such asy, 5, andy. Instrum.entanon of binaries é;ram on an Intel Xeon processor at 2.8GHz.
cannot be used for extracting execution parameters that ar

dependent upon cache behavior. These parameters include- System Security

0 andy, which have to be extracted without changing the It is important to stress that our platform does pog-

binary layout. For such purpose, we have executed bina-vent nor detect buffer overruns. It aims at preventing the

ries in a sand-boxing environment where instructions were adversary from running a single line of her own code on

interpreted. a protected machine. Our platform forces the adversary to
We evaluate the experimental results obtained for an im-use a buffer overrun exploit to jump into binaries that are

plementation of our platform. The tests were run on an Intel already running in protected mode and feed them with de-
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SPEC Exec. instr. [[ Cfg. 1$ Penalty [ Pen. | Ovhd. First | First IBS D$ misses | D$ miss 1.O. | Imp.
x10° misses /mis. [%] || write | Exit | x10° x10% | rate [%)] %] | [%]
A 403 x10° | 5167 x10° | 12.8 0.01 0.00 | 11.3
B | 130x0° | 1582x0° | 121 ] o000 23| 65 470 000 92
gzip 515 C | 347x10° | 6525x10° | 18.8 | 0.00 6885 1.34 0.00 | 11.7
D 4x10° 66 x10° | 17.9 | 0.00 1491 90 361 0.00 | 10.0
F | 3170x10° 58x10° | 18.2 | 11.2 151 | 10.1 | 47.0 6.87 | 38.7
A 54 x10° 702x10° | 131 0.01 0.00 | 93.7
B 5x10° 66 x10° | 13.1 | 0.00 81| 66 108 0.00 | 188
vpr 138 C 18 x10° 431x10° | 23.7 | 0.00 1665 1.20 0.00 | 884
D 4x10° 66 x10° | 16.9 | 0.00 118 61 75 0.00 | 295
E | 721x10° 15x10” | 20.8 | 13.23 69| 69| 108 599 | 54.7
A 1498 19025 | 12.7 | 0.00 0.00 | 11.9
B 896 12275 | 13.7 | 0.00 1281 64 125 0.00 | 11.2
mcf 112 C 1293 24696 | 19.1 | 0.00 1571 69 62 4612 4.12 0.00 | 70.2
D 491 9722 | 19.8 | 0.00 : : : 0.00 | 95
F 2 x107 36x10° | 17.2 | 32.34 89| 58| 125 11.25 | 68.0

63 9
A | 1073 wa 15 x10U 142 | 291 57| os| 388 154 | 47.1
perlbmk 523 B | 620 me 9 x109 14.6 1.73 640 012 0.82 | 52.6
C | 1071x0 215x10 192 | 10.74 461 | 57.1
D | 554x10° 115x10° | 19.9 | 7.19 67 | 128 267 203 | 718

(5]

A | 3153 wa 35 x102 11.0 | 7.90 63 71| 229 339 | 57.1
B | 875x10 10 X10 109 | 2.17 1.01 | 535
vortex 439 T | 2075x0° | 34xi0° | 164 | 7.75 1198 027 =304 608
D [ 828xi0° | 13xi0° | 161 303 ©°° | 12| 207 099 | 673
A 32298 413414 | 128 | 0.00 0.00 | 13.2
B 2791 35725 | 12.8 | 0.00 130 66 344 0.00 | 14.1
bzip2 526 C 16281 333761 | 205 | 0.00 1511 80| 222 2457 0.47 0.00 | 145
D 1668 35361 | 21.2 | 0.00 : : : 0.00 | 17.0
E | 1323x0° 23x10° | 189 | 4.43 112 | 52 | 344 213 | 432

53 9
g els;(l) ﬁgb gxw” 134 | 1.93 51| 69| 241 0.36 | 81.3
awolf 476 ’ ><109 139 | 055 5057 105 023 | 582
C | 484x10 11x10 227 | 231 019 | 91.7
D | 148x10° Zxio° | 238 | o074 9| 81| 200 012 | 837
A 114 x10° 854 x10° 75 | 10.66 5.06 | 52.5
Visual 8 B 39 x10° 203 x10° 52 253 131 138 077 16 0.20 148 | 415
FoxPro C | 115x10° 776 x10° 6.8 9.68 : 523 | 46.0
D 44 x10° 278 X10° 6.3 3.47 1491 110 058 2.81 | 19.0

Table 4. Cache statistics for SPEC2000 benchmarks with four I$ size / 1$ line length configuratlon$6KB/128B; B - 32KB/128B;C -
16KB/256B; D - 32KB/256B. For benchmarks with small L1 I$ footprints (gzip, vpr, mcf, and bzip2) we include two more configurafions:
(4KB/128B) andF' (2KB/128B). Columns 2 contains the total number of executed instructions. Columns 4, 5, 6, and 7 contain number of L1 I$
misses, secure execution penalty, ratio penalties over L1 I$ misses, and total execution overhead incurred by the penalty. The next two columns
labeled “First Write” and “First Exit” contain average indexes of the first encountered write instruction in the L1 I$ line and average index of the
first instruction that causes switch of L1 1$ lines. The “IBS” column displays the number of times execution path switched between IBs. Fourth to
last and third to last columns represent L1 D$ misses and miss rates with a 128B CL, 8-way associative 32KB D$. The last two columns represent
the performance overhead and improvement yielded by our optimization algorithm.

sired data to perform malicious actions. By (re)loading pro- [18]. However, there are no guarantees that the script is not
grams at random locations in operating memory, this taskvulnerable to a buffer overrun attack.
can be made difficult. Thus, our platform significantly re- Our platform has physical limits in protecting comput-
duces the likelihood and functionality of attacks an adver- ing systems. It cannot survive physical breaches into the
sary can launch against a protected system. Techniques thatomputing system. For example, a detached hard-drive ex-
prevent or detect buffer overruns (e.g., StackGuard [5]) canposes installed binaries which can be used to create small
be used in conjunction with our platform. malicious programs by patching signed I-blocks from exist-
ing working-copies. The resulting programs can be made
_Our platform provides robust system security, only if cer- 1o infiltrate both the OS and other users’ accounts. Note
tain conditions in the OS kernel mode are met. Namely, hat the patching attack can be made difficult by encrypting
system penetration can occur if the OS kernel mode is in-certain key storage containers of the OS. A sophisticated
te_rprgting instructions or scripts. Scripts or virtual machine adversary should be able to expose all secrets in the sys-
binaries are treated as data, not code; hence, they canngg, by thoroughly reverse engineering both hardware and
be authenticated using the mechanisms presented in this pasgftware. For an adversary who is operating remotely, the

per. In order to enable the kernel to run scripts, the OS patching attack is impossible according to the definition of
can provide an associated script mode with limited accessintrysion prevention systems.

to system resources and in particular, prohibitive policy for

calling the software installer from this mode. The OS in 6. Related Work

this mode can perform script authentication before execu- Four major approaches for code security have emerged:
tion either via public-key signatures or proof-carrying code code signing, sandboxes, firewalling, and proof-carrying

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY



code. Signing a program binary for authentication purposesand then reorders basic blocks within a given block so that
is conceptually the simplest code security technique. In thiscritical instructions are executed as late as possible within
case, authentication is done according to standardized auan instruction block in common cases. We have conducted
thentication protocols [1]. Sekar and Uppuluri developed a experiments by executing the SPEC2000 benchmark on a
security layer that includes a sandbox designed to protecttraditional and x86 platform enhanced with our system. Pre-
the application against malicious users and the host fromliminary results show that our code optimization techniques
malicious applications [21]. The main idea behind the fire- produced an overhead reduction of up to 90%.
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