Balanced Multithreading: Increasing Throughput via a
Low Cost Multithreading Hierarchy

Eric Tune Rakesh Kumar

Dean M. Tullsen Brad Calder

Computer Science and Engineering Department
University of California at San Diego
{etune,rakumar,tullsen,caldeé®cs.ucsd.edu

Abstract

A simultaneous multithreading (SMT) processor can issue
instructions from several threads every cycle, allowing it to
effectively hide various instruction latencies; this effect in-
creases with the number of simultaneous contexts supported.
However, each added context on an SMT processor incurs a
cost in complexity, which may lead to an increase in pipeline
length or a decrease in the maximum clock rate. This pa-
per presents new designs for multithreaded processors which
combine a conservative SMT implementation with a coarse-
grained multithreading capability. By presenting more virtual
contexts to the operating system and user than are supported
in the core pipeline, the new designs can take advantage of the
memory parallelism present in workloads with many threads,
while avoiding the performance penaltiesinherent in a many-
context SMT processor design. A design with 4 virtual con-
texts, but which is based on a 2-context SVIT processor core,
gains an additional 26% throughput when 4 threads are run
together.

1 Introduction

ibility of SMT comes at a cost. The register file and rename
tables must be enlarged to accommodate the architectural reg-
isters of the additional threads. This in turn can increase the
clock cycle time and/or the depth of the pipeline.

Coarse-grained multithreading (CGMT) [1, 21, 26] is a
more restrictive model where the processor can only execute
instructions from one thread at a time, but where it can switch
to a new thread after a short delay. This makes CGMT suited
for hiding longer delays. Soon, general-purpose micropro-
cessors will be experiencing delays to main memory of 500
or more cycles. This means that a context switch in response
to a memory access can take tens of cycles and still provide
a considerable performance benefit. Previous CGMT designs
relied on a larger register file to allow fast context switches,
which would likely slow down current pipeline designs and
interfere with register renaming. Instead, we describe a new
implementation of CGMT which does not affect the size or
design of the register file or renaming table.

We find that CGMT alone, triggered only by main-
memory accesses, provides unimpressive increases in per-
formance because it cannot hide the effect of shorter stalls
in a single thread. However, CGMT and SMT complement
each other very well. A design which combines both types of
multithreading provides a balance between support for hiding
long and short stalls, and a balance between high throughput

The ratio between main memory access time and corand high single-thread performance. We call this combina-
clock rates continues to grow. As a result, a processotion of technique8alanced Multithreading (BMT).
pipeline may be idle during much of a programs execution. A This combination of multithreading models can be com-
multithreading processor can maintain a high throughput depared to a cache hierarchy, which results imatithreading
spite a large relative memory latencies by executing instruchierarchy. The lowest level of multithreading (SMT) is small
tions from several programs. Many models of multithreading(fewer contexts), fast, expensive, and closely tied to the pro-
have been proposed. They can be categorized by how closeessor cycle time. The next level of multithreading (CGMT)
together in time instructions from different threads may be ex-is slower, potentially larger (fewer limits to the number of
ecuted, which affects how the state for different threads mustontexts that can be supported), cheaper, and has no impact
be managed. Simultaneous Multithreading [31, 30, 12, 33Jon processor cycle time or pipeline depth.

(SMT) is the least restrictive model, in that instructions from

In our design, the operating system sees miateial con-

multiple threads can execute in the same cycle. This flexibiltexts than are supported in the core pipeline. These virtual
ity allows an SMT processor to hide stalls in one thread bycontexts are controlled by a mechanism to quickly switch be-
executing instructions from other threads. However, the flextween threads on long latency load misses. The method we
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propose for adding more virtual contexts does not increase th&hey suggest compiler-based register file partitioning to re-

size of the physical register file or of the renaming tables. In-duce context-switch overhead. Horowigzal. similarly sug-

stead, inactive contexts reside in a separate memory dedicategst using memory references which cause cache misses to

to that purpose, which can be simpler and far from the corebranch or trap to a user-level handler [13]. Our approach uses

as compared to a register file, and will not be timing critical. lightweight hardware support to make context switches faster

Further, those threads that are swapped out of the processtitan would be possible purely using software, and does not

core do not need to be renamed, which avoids an increase irequire recompilation.

the size of the renaming table. This architecture can achieve

the throughput near that of a many-context SMT processor2.2  Simultaneous Multithreading

but with the pipeline and clock rate of an SMT implementa-

tion that supports fewer threads. We find that we canincrease Simultaneous multithreading can increase the utilization

the throughput of an SMT processor design by as much asf the execution resources of a single processor core by ex-

26% by applying these small changes to the processor core.ecuting instructions from different threads at the same time.
This paper is organized as follows: Section 2 discussesiowever, each additional simultaneous thread expands struc-

related prior work. Section 3 presents the architecture andures whose speed may directly affect performance, in partic-

mechanisms for combining SMT and CGMT. Section 4 dis-ular the register file. To reduce the incremental cost of addi-

cusses our evaluation methodology. Results are presented fipnal threads in an SMT processor, Redstahal. [20] pro-

Section 5. pose partitioning the architectural register file. détal. [17]
propose software-directed register deallocation to decrease
2  Related Work dynamic register file demand for SMT processors. Both [20]

and [17] require compiler support. Multi-level register file or-
ganizations reduce the average register access time [4, 8, 3].
There has been a large body of work on the three primary Register file speed is a function of the number of ports,
multithreading execution models. Fine-grained multithread-as well as the number of registers it contains. A processor
ing architectures [24, 2, 10, 16] switch threads every proceswith a high issue width requires a register file with many
sor cycle. Coarse-grained multithreading [1, 21, 26, 18, S]ports to avoid contention. The port requirements can be re-
(CGMT) architectures switch to a different thread if the cur- |axed [19, 14, 27], but that requires additional hardware to
rent thread has a costly stall. Simultaneous multithreadarbitrate among the ports.

ing [31, 30, 12, 33] (SMT) architectures can issue instructions  Tuyllsen and Brown [29] note that very long latency mem-

from multiple threads simultaneously. ory operations can create problems for an SMT processor.
They suggest that when a thread is stalled waiting for a mem-
2.1 Coarse-Grain Multithreading ory access, the instructions after the miss should be flushed

from the pipeline, freeing critical shared execution resources.
Our scheme inherently provides the same functionality. How-
ever, their proposal fails to free the most critical shared re-

CGMT, performing a context switch in 14 cycles (4 cycles thread toxts. Wi desi
with aggressive optimizations). The Sparcle architects disSOurce —thread contexts. We compare our processor designs
gainst an SMT processor which implements their flushing

abled the register windows present in the Sparc processcﬁ

that they reused, and used the extra registers to support rgechanlsm. Our results_ show that free_mg resou.rces being
second context. The Sparcle processor was in-order, with §€/d by a stalled thread is indeed very important; however,
short pipeline and did not perform register renaming Themaking those same resources available to a thread that would

IBM RS64 IV processor [5] supports CGMT with 2 threads not otherwise have a chance to run is also important. Other
and is in-order. The RS64 designers chose to implement or;l _searchers have suggested more sophisticated flushing poli-
two contexts, which avoided any cycle-time penalty from the les for SMT [6], which we do not evaluate. However, im-

additional registers. For the processors we seek to imprové),rovements to policies Wh'?h control whc_an to flush an SM_T
which have large instruction windows backed by additional PrOCESSor can also be applied to controlling thread-swapping

registers, the register file access time is much more likely dha BMT processor.
be on the critical timing path. Therefore, we present a differ-
ent approach to context switching. 3 Architecture

Waldspurger and Wiehl [32] avoid expanding the register
file in a CGMT architecture by recompiling code so that each In this paper, we use the tercontext to refer to the hard-
thread used fewer registers. Mowry and Ramkissoon [18ware which gives a processor the ability to run a process with-
propose software-controlled CGMT to help tolerate the la-out operating system or software intervention. We use the
tency of shared data in a shared-memory multiprocessotermthread to refer to a program assigned to a context by the
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operating system. Because the BMT architecture we proposa load is detected, it isanceled, but its memory request re-
exposes more contexts to the operating system than can lmeains in the memory system. In the commit stage, the
active at once in the processor core, we distinguish betweeload instruction will raise an exception when it is the old-
physical contexts andvirtual contexts. est instruction in its thread. Fetching from that thread stops,

The number of physical contexts, denotég,,,, is the instructions from that thread are flushed, the PC of the can-
number of threads which can have instructions in the pipelinecelled instruction is saved, and the register map is restored
simultaneously, and is limited by the register file and renam+o point to the proper state. However, instead of jumping to
ing table sizes. The number ofrtual contexts, denoted a trap handler, control is transferred to a microprogrammed
Cuirt, is the total number of threads which are supportedinstruction sequence.
at once, via CGMT. For an SMT-only processof,,; = One side effect of canceling an instruction, as we do with
Cphys- We refer to an SMT-only processor design as beinglong latency loads, is that the possibility of livelock is intro-
an SMTC processor design when it hascontexts. For ex-  duced. Kubiatowicz gives a thorough treatment of these is-
ample, the Pentium 4 is an SMT-2 processor. We refer to &ues in [15]. To avoid livelock in our simulations, we require
Balanced Multithreading design witt,,,,s physical contexts  that a thread commit at least one instruction before it can be
andCly,+ virtual contexts as a BMT,4ys/Cyirt Processor. swapped out.

Because there are more virtual contexts than physical con-  Microprogrammed Context Switch—After a thread has
texts in a BMT processor, some threads will ipactive at  peen flushed, instructions are fetched from a microcode con-
any given time. Arinactive thread can have a pending main | store. This microprogram consists of (1) a sequence of
memory request, but, unlike aactive thread, an inactive  store-liker save instructions, (2) a special thread-switch in-
thread does not have instructions in the pipeline nor does ittryction, and (3) a sequence of load-likeest or e instruc-

have values in the primary register file. tions. Each of the save andr r est or e instructions is re-
named, issued, and executed on an integer unit like a nor-
3.1 Firmware Context Switching mal instruction. They are like a load or store instruction

in they have one register operand, but they do not access

We propose a context switching mechanism which (1)Programmer-visible memory space or undergo address trans-
does not increase the size of the register file because arcHation. Instead they access a special buffer,|tizetive Reg-
tectural state of inactive threads is stored elsewhere, (2) dodster Buffer (IRB), which is described below. The address in
not increase the number of ports on the register file, becaus&e IRB is implicit given the operand and thread associated
the save/restore instructions access the register file like ordWith anr save/r r est or e instruction. An unoptimized mi-
nary instructions, (3) does not affect the design of the renamcroprogram would have onesave and one r est or e in-
ing table, because inactive threads have no instructions in th&truction for each architectural register.
pipeline, and (4) is considerably faster than a software con- We add two optimizations to this microcode sequence
text switch by the operating system. This mechanism, whichwhich reduce the number of instructions in a context switch.

we callfirmware context switching, uses: First, aDirty Register Mask (DRM) tracks which architec-
1. an exception-like mechanism to initiate a context switchtural registers have been modified by committed instructions
and to flush the pipeline, since the last thread swap. The microcode sequencer uses

2. a microcoded instruction sequence of special instructhis bitmask to selectively generatsave instructions only
tions to swap the register state of active and inactivefor registers which have been modified. The correct value

threads. of unmodified registers is still in the IRB. For the short times
3. a separate buffer to hold architectural registers of inacthat threads are often swapped in, this can significantly reduce
tive threads, the number of save instructions. Second, for those bench-
4. a small amount of duplicated or additional hardware inmarks which never use floating point registers, the floating
areas that should not be critical to performance. point registers are not restored. Operating systems already
We now describe the features of firmware context switchinguse this technique to shorten software context switches. Both
in greater detail. techniques shorten the time to swap threads and reduce con-

Detecting Load Misses and F|ushing_\A/hen a load in- tention for functional units with other active threads.

struction needs to directly access main memory, athread swap Duplicated Hardware—While registers are saved and re-
may be initiated. A firmware context switch is not fast enoughstored on a context switch, some small bits of hardware can
to make thread switching profitable for loads which hit in a simply be replicated for each virtual context. These include
second or third level cache, given current cache latencies. Wehe branch global history register, the return stack, and pro-
use a simple method to detect main memory accesses: if @ssor control registers, such as the page-table base register
load has an execution latency over a certain threshold, thand floating-point control register. Each of these resources,
load is assumed to be accessing main memory. When suchihich we expect are not likely to be on a critical circuit path,
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would need to be accessed through a multiplexer which woulB.2 Time Required to Swap Threads

be controlled by a physical-to-virtual context mapping regis-

ter. The special thread-switch instruction changes this register | our simulations, with the baseline BMT configuration, a

to correspond to the next thread to run. majority of firmware context switches take 60 cycles or less.
Selecting the Next Thread—The next thread to swap inis However, there is considerable room for variation. This sec-

known before a thread swap occurs. We use a Least-Recentl{ion describes the range of times required for each step of the

Run policy for selecting the next thread. When an activecontext switch.

thread is swapped out of the pipeline, the least recently run 25 cycles to detect main memory accessi-a load in-

thread is swapped in. struction does not complete execution in 25 cycles, then it is

When a thread incurs a miss, but all inactive threads ar&onsidered to be a main-memory access. Thisincludes a 3 cy-
also waiting for memory, we found that a good policy was cle load instruction latency, a 14 cycle L2 latency, and several
to swap out the stalled thread, swap in the least recently rufXtra cycles to account for contention when accessing the L2

thread, but gate (stall) fetch for that least recently run thread@che. This is for the baseline memory architecture. For the
until its data is returned from memory. This prevents the still-Other memory designs investigated in Section 5.4, this thresh-

stalled thread from introducing instructions into the proces-°ld is adjusted. In principle, this time could be reduced by an
sor that will interfere with other active threads. Eickemeyer,&211Y reply from the L2 tag array, or by consulting a load-

et al., [9], refer to this policy aswitch-when-ready in their hit predictor. However, as we show in Secti_on 5.6, syvit_ching
evaluation of a CGMT-only processor. prematur_ely can dec_rease memory paral.lellsm. by missing fche
. . . ) opportunity to issue independent load misses in parallel with
Inactive Register Buffer—Adding physical contexts to @ g first miss encountered. The 60 cycle figure above does not
processor increases the total number of registers in the regsq|,de these 25 cycles.

ister file, which is likely to affect the clock rate or pipeline 5 4 cycles to trigger flush—Fhere is a 3-cycle minimum

!ength. The access requirements for active an_d inactive regHelay to trigger a flush in our model. However, older uncom-
isters are quite different. As a result of these differences, th itted instructions from the same thread may further delay

design consraints on the IRB are considerably relaxed, COMe flush. In our simulations, the flush occurs after 3 cycles

pare(]zlto the reghiste_r ﬁleﬁ (We will use th? teprrimaryhregl-RB 64% of the time, within 15 cycles 94% of the time, and very
Ister file to emphasize that we are not referring to the ')rarely after more than 30 cycles. A flush could be triggered

For a 4-wide processor design, the IRB has at most 4 portf&efore the canceled load becomes the oldest instruction in

(re_ad/ write)_, compared to 12 ports (8 re adand 4 yvrite) for the|ts thread, but we found that the cost of unnecessary flushes
primary register file. It does not require bypassing, becaus

. . Raused by wrong path instructions outweighed the advantage
the same locations are never written and then read close o5t flushing sooner
gether in time. Also, it can tolerate being placed far from the 15 cycles for microcode to reach executedstructions

core pipeline, and thus has fewer layout constraints. In regargan be fetched from the microcode control store immediately
to the last item, we model a 10 cycle (pipelined) access time

for the IRB, implying its distance from the core is similar to ?;Ler;tgreeﬂlu; gt:latsasbs:tr\]/v tég,??erteccﬁ{ ;:(;Zigﬁgne we model,
the L2 cache, certainly further than the L1. 9 ’

~10 cycles to issue save instructions—The micropro-
In addition, firmware context SWitChing is well-suited to gram will contain 1-62 save instructions, depending on
a processor with anified register file for both architectural  the number of dirty registers. There is considerable varia-
registers and for uncommitted results, as in [34, 11]. In thatjon between benchmarks. Overall, though, on 50% of thread
type of architecture, including those with separate floating-swaps, 20 or fewer registers had been modified, and on 90%
point and integer register files, an architectural register is nopf thread swaps, 40 or fewer had been modified. Thave
mapped to a fixed location in the register file, so saving orinstructions compete to use the integer units with instructions
restoring it involves first consulting the renaming table. Thefrom other active threads, but in the best casey daves
alternative architecture, with a separate reorder buffer angqke 10 cycles to execute, 4 at a time.
commit register file, may allow for greater hardware support 15 cycles to issue r est or e instructions—The mi-
of context switching, but it requires a higher read ba”dWidthcroprogram concludes with 62 est or e instructions to re-
on the reorder buffer for a given level of instruction through- giore the registers of the new thread. These take at least
put, and is poorly suited to SMT. 16 cycles to execute. For those 4 of the 16 benchmarks
Our firmware approach to context switching does not addwhich do not use floating-point registers, there are only 31
additional ports to the register file, since the thread switching r est or es.
operations use the ordinary instruction path. In summary, the <10 cycles restore-use latency-After the micropro-
inactive register buffer adds no complexity to the core of thegram is fetched, but concurrently with the execution of the

processor. rrest ores, the processor fetches from the new thread. We
Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) CSFK/[PUQTER
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Fetch < 3 instructions per thread fromd 2 threads each cycle Fast Forward
Branch prediction 64Kbit 2bcGskewDeep Pipeline22 stages, 16 Name Code Input Instructions«(L0%)
cycle misp. penalty

Out—o_f—order executio_n with 45_3/32/20 gntry integer/f_p/mem_ory in- :;?mp f _startx 110 2705%%
struction queues, which may issue 4 integer/mem instructign2 ( crafty 2 700
mem) and 2 fp instructions each cycle eon 3 rushmeier 100
Instruction Window supports 128 in-flight instructions galgel 4 5000
Memory system gap 5 185330
32k 4-way 3 cycle L1 Instruction and Data caches (2 acc/cyc) g;:: ? l?: hic 3%13%%
64 byte linesize for L1 caches ?nc? 8 grap 12600
64 entry DTLB / 48 entry ITLB, fully associative mesa 9 1300
256 entry second level Data and Instruction TLBs mgrid A 2100
128 byte linesize for higher-level caches parser B 400
2MB 8-way 14 cycle L2 cache (1 acc/cyc) fﬁg‘lf g makerand 19000000
500 cycle memory access tlme vortex E 2 6000
— Baseline parameter, different where noted. vpr F route 36100

Table 1. Simulated Processor Specifications. Table 2. Benchmarks.

o 28 o1 [YOUN10°7 [an o123 | BA B1Z3ER07
model a 10 cycle latency for ther est or e instructions, 2C 23 |3a o012 |4C 89AB 8 02308ACE
and the execution of ther est or e instructions is fully 2D %4 138 345 |42 SHEE

- . . . 3C 678 10A 0123456789
pipelined. Depending on what registers are used first by the %ch gg 30 9AB 21(':3 ?@% 10B 456789ABCD
; ; 3E CDE 10C 89ABCDEFO1
ne(\j/v thrder;d, there vy|ll l:)e a Oalq cycLe delay. Thls could be oH 18 3F 0o 4H 9BDF 105 CDEF012345
reduced by strategically reordering theest or e instruc- 23 OA 6A 012345
. . Sk g |3H CEF | @B 678943 | 12A 456789ABCDEF
tions to match the order of their use by the new thread, based 5* g¢ %5 %gg 8C ABCDEF %%E 8%%%2%@?%E
on the instructions previously flushed. Of course, the new %“N/l SED 3K DF6 gg 239%55 12D 0123456789AB
thread may also incur an instruction cache miss. 20 EF
Bench. 16A 01234567
2P FO nch 1| (see Tol 2) 93234207

3.3 Common Architecture
Table 3. Workloads.

The parameters common to all processor designs ar
shown in Table 1. We intend that these parameters represegft Methodology
a reasonable processor design one or two process generations i . ] )
from now, except that the cache sizes are somewhat smaller We evaluate each design alternative by simulation. For
than might be projected. We chose relatively smaller cach&ach design, we simulate workloads of different sizes. For

sizes to match the memory footprint of the benchmarks wefach workload size, we present the average of several dif-
use. ferent workloads. Each of the workloads are comprised of a

) i subset of the SPEC2000 benchmarks.

The baseline SMT processors we evaluate implements the \ye perform all simulations using a detailed, execution-
flush-on-cache-miss policy from [29], which makes more yen simulator, based on SMTSIM [28]. The simulator ex-
room in the instruction Wlndgw for ms_tructlons from non- oc.utes Alpha binaries which are compiled with the DEC C
stia.llled thr.eads. Thus, the miss dete(?tlon and flushing €ap: o4) or Fortran { 06) compiler. We added a software TLB
bility required by BMT should not be viewed as an extra costyyiss handler that closely models the Alpha architecture PAL-
of our design. Code TLB trap handler.

We model a software TLB miss handler mechanism close The speedup results we present are meantto be an estimate
to that used in the Alpha architecture [7] for all processorof the overall improvementin throughput for a system which
designs. For some workloads, page-table walks due to TLRontinuously runs the 16 benchmarks shown in Table 2, as
misses represent a significant fraction of all main memorycompared to a single-threaded system. We simulate a portion
accesses, and a fraction which increases as more threads afeeach benchmark. With the assistance of SimPoint [22], we
run together. Therefore, we allow thread swaps to occur orselect a starting point for simulation within each benchmark.
the loads in the TLB miss trap handler routine. A systemUsing the multiple simulation point algorithm, we select a
with a hardware TLB handler should be able to accommodatg@hase in each benchmark that represents the largest amount
thread-swapping as well. of execution.
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ockssor

We simulate several different workloads for each work-
. ) ; S 3t
load size, which represent a sampling of the space of possis |+ BMT-6§12
ble workloads. The exact combinations used are shown in 3 § 2.8, gng 8 _
where each workload is described as a string of characterss 61 - '+ BMT-4/8
Each character represents a benchmark, as shown in the cc2 e * BMT-4/6

(2]
umn labeledCodes in Table 2. For example, workloa2iB 5 24r e "
consists of 2 threadsrt andcr af t y. The workloads are g 2.2} OSAMT_L“,
selected so that each benchmark is included in more than orz |

workload at each workload size, and to reduce commonal ® 5 SMf43+ BMT—2/4
. . . . S~ 1,8 L .4

ity between workloads without unduly increasing the number 2 %0 sMT-6 (no flush) .+ BMT-26
of simulations. Beyond that, the combinations are selecte(g ;g1 .. :

without aljy des.ign. ' _ (% 1al o ‘OSMT-4 (n/f) 0 SMT-2
In all simulations, after advancing each thread to the sim-5 ~ - OSMT-3 (n/f)
Q '
ulation starting point indicated in Table 2 using a checkpoint, £ 1.2} . oSMT-2 (no ﬂusl]l)

. . . s ; ) = CGMT-3
we performed a detailed simulation uritil® x n instructions g ) ) ) ) ) I &GMT-2
had been executed (whemeis the number of threads in the 512 448 384 320 256 192
workload). When simulating multiple threads, each bench- Capacity of primary register file, R
mark in a single workload will run for a different number of
instructions under different processor parameters. If there is Figure 1. Speedup vs register file size.

a large variation in performance of the running threads, this
will complicate interpretation of the results. Thus, we present ) )
all performance results ageighted speedup [25, 29]. The and memory parameters. We also examine the importance of
weighted speedup of a multithreaded workload is defined afirmware support for thread switching, and of store retirement
the sum of the speedups of each individual thread within thePelicies. We consider the effect of changing the delay to trig-
workload over a baseline run (in this case single-thread exe@€r & thread swap after a miss. Finally, we quantify the effect
cution). The speedup of a thread within a workload is definecf @ larger register file on overall performance.
as its performance, in instructions per cycle (IPC), when part
of a multithreaded run, divided by its IPC when run by itself 5.1  Increasing Throughput Simply
over the same range of instructions. Thus weighted speedup
represents average relative progress on the workload. By con- Figure 1 illustrates the tradeoff between throughput and
trast, other metrics, like total instructions per cycle, can artifi-physical register file size. The figure shows that, for a given
cially create the appearance of increases in performance wheargister file size, a BMT processor gets greater throughput
more instructions are executed from a higher-IPC thread. than an SMT processor.

Each speedup we present for 2, 3, 4, 6, 8, 10 or 12 threads The z-axis shows the number of registers in the physical
atatime represents the average of 16, 11, 8, 6, 5, or 4 differertegister file,R,;,,s. We define
simulations, respectively, as shown in Table 3.

We use CACTI 3.2 [23] for modeling register access times. Rphys = Cphys X Rarch + Rren
Since CACTI 3.2 is designed to evaluate the access time of

caches, we discarded the tag path in the measures presenf@faereR(f’"c”’ = 62 becau;e the.AIpha ISA defines 62'non-
here. Access times assume a 70nm process. zero registers, and, agai@,,s is the number of physical
contexts. All designs assume a single unified physical register

. file. The IRB is not included iR, because it should not
5 Analysis and Results be part of a critical circuit timing path. For all the results, ex-
cept where noted in Section 5.R,..,, = 128, which permits
The number of physical contexts supported by a processof, 28 in-flight instructions across all threads. Thaxis shows
Cypnys, affects the size of the physical register file and the re-speedup relative to an otherwise equivalent single-thread pro-
naming table, both of which are likely to affect the maximum cessor.
clock speed and pipeline length. This can degrade perfor- There are 4 groups of points to consider. The points la-
mance, especially when one or few threads are run at a timdaeledSMT-n, in the middle curve, show the speedup of SMT
In this paper, we use the number of physical registgtg,,s,  processors running a workload of sizeFor an SMT proces-
as a proxy for these other effects. The following subsectiorsor,n < Cphys, aNdCppys = Cluirt, SO We USEppys = 1
examines the relationship between throughput&pg,; for ~ to computeR,,,s. The points labele@® T-n (no flush), in
different multithreading schemes. Also in this section, wethe lower curve, show the performance of a series of SMT
examine how BMT performs over a range of workload sizesprocessor designs without a mechanism to flush a thread with
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a long-latency load [29]. We present this to emphasize the
importance of having such a mechanism in any multithread-
ing processor with a shared instruction window. The points 35l
labeledBMT-m/n represent BMT designs witli'y,,,s = m ' SMT-12 0 " *~
andC;; > n, running workloads of. threads. 3
TheBMT-2/4 processor gets 26% more throughput than an
SMT-2 processor, while running at the same clock speed with o
the same pipeline depth. A 4-context SMT processor get:g
17% more throughput when enhanced with BMT, assuming E;&) 25}
jobs are ready to run. =
We model the same pipeline depth and cycle time for all £
SMT and BMT configurations. As additional hardware con- oL -
texts are added, keeping the pipeline depth or cycle time con o BMT 2 instant
stant is unlikely, but the focus of our comparisons are be- BMT 2 firmware
tween SMT and BMT configurations with the same number 15}
of physical contexts. Because the speedup is not adjusted fc
these effects, care should be taken when comparing point
with different values ofR,,.. For example, while the 4- 1 :
context SMT processor shows 54% higher throughput than ¢ 234
2-context SMT processor when 4 threads are available, differ
ences in the pipeline and/or clock rate between those two de- _ _
signs mean that the relative throughput of the 4-context SMT Figure 2. Speedup versus workload size.
processor will be lower than that number.
. .Even 'gnoring complexity d|ffe_ren.ces.,.however, the ad'instructions contend with other active threads for execution
ditional benefit of our approach is significant. Regardless '
S resources. To understand the cost of the firmware context
of whether a 2, 4 or 6 context SMT processor design is the .~ . .
: . switching mechanism, we compare the performance of the
best choice for particular technology and performance goals,. . : y
. . “firmware mechanism with a hypotheti¢attant save/restore
BMT can be added to boost throughput without affecting :
L . o mechanism.
pipeline complexity. Additionally, these results assume all : . .
. . Figure 2 shows the weighted speedup of several differ-
physical contexts are filled. When there are fewer threads . .
. nt SMT and BMT designs. The-axis shows the num-
than contexts, the advantage of the BMT designs over SM . A
ber of threads in a workload;, which is assumed to be
are even greater.

. equal toC,;,; for this study. They-axis shows weighted
This figure also shows the performance of CGMT alone. Itspeedup of each design compared to a single-thread proces-

provides only marginal gains over a single-threaded proces;or_ On the curve where the points are labe-n, the

... OSMT-16

BMT 6 ins.

BMT 6 frm.

BMT 4 instant
BMT 4 firmware

d

eig

W

6 8 10 12 16
Number of threads in workload, T

sor. Because of the high cost of moving state in and out of__. ;
. oints represent SMT processors capable of running work-
the processor core, CGMT alone is of less value. But whe P b P 9

) . . oads ofn threads together. There are three sets of curves
CGMT is added to SMT, the additional physical contexts can " 9

. o o for BMT designs with 2, 4, or 6 physical contexts. Within
do useful worlf while a context switch is underway, hiding the each set, there is a curve labefiedware, for a processor us-
cost of the switch.

ing the firmware thread swapping mechanism, and a curve la-
. ) ) beledinstant which represents a processor with an idealized,
5.2 Scalability of Balanced Multithreading nearly instantaneous thread-swapping mechanism. The in-
stant mechanism requires only 1 cycle to save and restore the
Adding more threads to a processor can increase perforarchitectural registers of the outgoing and incoming threads,
mance by increasing memory parallelism. However, with tooonce the miss-to-memory is detected and a thread is flushed.
many threads, the benefits can be outweighed by the cost of Figure 2 illustrates two effects. First, for each value of
contention between threads. In this section, we investigate’,,,,, there is an optimal value af';,+/Cpnys. Second,
how well different BMT designs perform, compared to SMT as C,,, increases, the relative cost of the firmware thread
designs, as the virtual-to-physical context rafiQ;,: / Cphys . swapping mechanism increases too. The figure shows that
increases. the gain from BMT peaks whe@',;,+/Cprys = 2. When
The firmware mechanism to swap threads in and out othe ratio is larger than 2, the costs of running multiple threads
the processor core has two costs. First, the time requirebegin to outweigh the benefits. For a BMT processor, that
to complete the context switch delays the start of executiorcost has two components: the cost of thread swapping and
of the incoming thread. Second, the firmware save/restor¢he cost of interference between threads. The curves labeled
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sl o register mask increases as more threads are run because of the
§ o ' greater contention for functional units. A lesser effect may be
8,; 25} R — & that programs are swapped in for less time when more threads
o o BMT—4§:XV are present, and thus have time to dirty fewer registers.
£ 2¢ o BMT—2 o SMT Without an IRB, inactive registers could be stored directly
2 ' v/v — BMT into memory (where they would typically be caught by the
= 1510 - gm W;O :;*FE‘M cache). Thus, for the no-IRB configuration, the save-restore
1L , , _V_ W , instructions use the load/store units, which halves the rate at
2 3 4 6 8 which they may issue. In the no-IRB configuration, if a miss

occurs in the thread-swap microcode, the thread waits instead
of performing a second swap. Because such misses are un-
common in theBMT-2 configurations, there is little perfor-
mance impact. With a larger workload size, the IRB is im-
portant for good performance.

Figure 3. Performance of BMT with different
levels of hardware support.

instant, while being perhaps impractical, show the relative5.4 Sensitivity to Memory Hierarchy
contribution of these two effects. Whenis small, the cost

of swapping is low. The cost of thread swapping comes from e speedup provided by balanced multithreading is sen-
contention for instruction queue space and load/store portsitive to three parameters of the memory hierarchy: The size
from the thread-swapping instructions. Thus, atBMT-2  of the caches, the latency to access the lowest level of cache,
design point, there is little reason to try to further optimize gnd the latency to main memory. Figure 4 shows the perfor-
the thread swapping mechanism, but BMT-6, there is an  mance of SMT and BMT with different memory configura-
Incentive to Improve it. tions. Each group of bars shows the performance of different
For larger values of'vir¢/Cphys and largem, the benefit  processor designs with the same memory hierarchy. All con-
from increased memory parallelism is outweighed by a lossjgurations have the L1 caches described in Table 1, but the
of locality in the higher level caches. The loss of locality is |ower levels of the hierarchy are varied. The configurations
caused by having many threads in the workload. The optimajyere chosen to study the sensitivity to individual memory-
Cuirt /Cpnys ratios suggested by this graph are for an averaggystem parameters. The y-axis represents weighted speedup.
over many workloads, but will vary with the particular threads For each group of bars, the speedup is computed relative to
running. This represents an opportunity to further improve, single-threaded processor with the same memory hierarchy.
performance by adaptively sizing the number of threads in axs a result, the speedup for a design with a larger cache hier-
Workload based on the behaVior Of the Constituent threads. archy may be |eSS than that fora design W|th a Sma"er Cache_
The bestCy;,+/Cprys ratio for a BMT system depends on
5.3 Hardware Support for Thread Swapping the memory system, so we show two BMT configurations
next to each corresponding SMT processor design. Above
The previous section compared the performance of oueach group of bars is shown the speedup of the better of the
baseline thread swapping mechanism with a hypotheticatwo BMT bars over the adjacent SMT bar. All three of those
one-cycle latency thread swapping mechanism. Our baséars the samé€’,;,,. For example, the first group of bars,
line mechanism already includes some optimizations to retabeledBase, represents the memory configuration used for
duce swapping latency. This section evaluates two of thosall previous results in this paper: a 500 cycle memory latency
optimizations: the Dirty Register Mask (DRM) and the Inac- and a 14-cycle 2MB L2 Cache. As noted in the ploBMT-
tive Register Buffer (IRB). 2/4 design gets 26% speedup over@miT-2 processor, and a
The DRM, discussed in Section 3.1, allows the threadBMT-4/8 gets 16% speedup over &WT-4 design.
swap to only save registers values that have been touched. Running more threads at the same time has a cost and a
The IRB may be considered an optimization compared to abenefit. Part of the cost is from increased contention in the
purely software thread swap, where a context’s state is storecaches, predictors and other structures. The benefit is an in-
using conventional loads and stores. Figure 3 shows the pecrease in the number of parallel memory accesses. Changes
formance of BMT processors with 2 or 4 physical contexts,to the memory parameters shift these costs and benefits.
with varying levels of hardware support for thread swapping, A larger cache, as iBig$, reduces the number of op-
and of SMT processors with 2—6 contexts. portunities to use coarse-grained thread switching. Also, a
The two BMT features are not important for tBMT-2  slower cache increases the cost of misses caused by cache
processor, but are important for tBMT-4 processor. Of the contention, and increases the latency before the processor can
two, the DRM is more important. The benefit of the dirty- detect a main memory access. This is illustrated by the lower

YF]',F.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) COMPUTER
1072-4451/04 $20.00 © 2004 IEEE SOCIETY



w

El SMT-2 Bl SVT
—i ] SMT Store Miss Flush
2:5 1 BMT-2

N
ol

[1 BMT-2 Store Miss Swap

]
Bl SMT-4 ) "
All with Strict Stores

[ BMT4/6
[] BMT4/8

=
o

NameSize and Latency
Base 2M 14/500
FastM2M 14/350

Weighted Speedup
N

[y

Weighted Speedup
N

SlowM2M 14/650
15 Big$ 4M 14/500 2 3 4 6
SmallgLM 14/500 Number of Threads in Workload

Slow$2M 30/500
L3  256k/2M 14/30/50

Base Fast\MSlowM Big$ Small$Slows L3 Figure 5. Performance of SMT and BMT proces-
Memory Configuration . . . .
sors with strict store retirement policy.

Figure 4. Speedup vs memory hierarchy size

and speed i
memory latency, and we expect that real systems will reach

that level soon. As memory latency increases, the advan-
tage of adding more virtual contexts increases: VAtwM,
additional speedup from BMT for tH@ow$ group. the BMT2/4 and BMT4/8 configurations significantly outper-
TheL3 configuration has a third level of cache, which has form BMT2/3 and BMT4/6, respectively.
both the detrimental effects just mentioned. In this configu-
ration, context switching only occurs on an L3 miss, becaus&.5 Store Retirement Policies
the firmware context switch mechanism is too slow to hide an

L3 hit. With a faster memoryHastM), the fraction of time All the architectures presented in this chapter allow store
spent on context switches relative to total execution time in4nstructions which miss in cache partially complete. That
creases. iS, younger non-store instructions may commit, freeing up

In the case of the larger cache for tBig$ configuration,  space in the instruction window, even when a store’s result
there are simply not enough misses to main memory to offhas not yet been written to the L1 data cache. We believe that
set the increase in contention. For example, BMiT-4/6 this fairly reflects some modern processor designs. Neverthe-
processor with the Base memory configuration had, over alless, we also evaluated an architecture wititrect store re-
workloads, 2.5 main memory accesses per 1000 committetrement policy; younger instructions wait for a store to write
instructions. The same processor with Biggmemory con-  to the L1 cache. A strict store retirement policy might be
figuration only had 0.8 main memory accesses per 1000 innecessary in some systems to insure timely handling of in-
structions. The larger cache significantly reduces the opporterrupts. With a strict retirement policy, a long-latency store
tunity to benefit from thread swapping. At the same time, themay cause a thread to fill up the instruction window, stalling
number of Data Cache misses which do not go to memonyprogress for all threads. To counteract this, we found that
increases. FOBMT-4/6, with the Base memory, there are 16 swapping on long latency stores as well as loads produces
L1 misses that do not go to memory per 1000 instructionsgood results. Figure 5 evaluates SMT and BMT architectures
For theBig $ configuration, there are 22 L1 misses per 1000with a strict store retirement policy. This shows that, under
instructions that are filled without going to memory. a strict store retirement policy, SMT and BMT architectures

It should be noted that the lessened need for BMT withboth benefit significantly from flushing or swapping on stores.
large caches is primarily a function of the workload, rather
than the architecture. Even today, many commercial appli5.6 Delayed Detection of Load Misses
cations will exercise caches of this size much more heav-
ily. Thus, while cache sizes will increase, which reduces In the baseline BMT configuration, a thread swap is trig-
the number of main memory accesses, which in turn reducegered when a load instruction takes longer than 25 cycles to
the effectiveness of our technique, we expect this effect tacomplete. The minimum latency for an L2 hit in the base-
be largely mitigated by increases in application working setline architecture is 17 cycles, but some loads take longer due
sizes. Thus, when evaluating our technique, we feel it is faito contention at the L2 cache. Waiting an additional 8 cy-
to focus on the results for the baseline memory configurationcles avoids premature swapping. The simple wait-25-cycles

The bar-groups labeleBastM and SowM show results  approach only requires a small counter for each active load
for processors with 350 and 650 cycle main memory laten4nstruction. A alternative mechanism might include a signal
cies, respectively. We use 500 cycles as the baseline maiinom the L2 cache after the tags has been checked. Detect-
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different delays to initiate swapping on a miss. P ——
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ing a load miss and switching sooner may improve perfor-q 0
mance, since the next thread begins executing sooner. How 0 20 40 60 0 20 40 60

ever, flushing a thread too soon can prevent the execution of
a second load instru_ction, which would otherwise initiate a Figure 7. Probability, y, at time = after execut-
second, parallel, main-memory access. ing a load instruction which misses in L2, that

We evaluated the performance of 4 BMT designs with 4 further main-memory accesses will be initi-
different values for the load-execution to miss-detection la-  4¢eq.
tency,l. Those results are shown in Figure 6. The value of
[ is indicated in the legend. Theaxis shows the change in
weighted speedup for a given design wliésn changed from )
its baseline value of 25. Note that detecting an L2 miss afinose threads should be swapped out as soon as possible. For
ter only 5 cycles would require either checking the L2 tags9¢C, €ven 60 cycles following a L2 miss, it is quite likely
very quickly, or a load hit predictor. Fortunately, detecting a that additional misses will occur before the first miss com-
miss sooner actually decreases throughput. For example, RI€t€S, sagcc should be swapped out after a longer delay.
L2 misses could be detected 5 cycles after a load first exe'Ve evaluated a static, per-thread swap-delay policy. This is

cuted, the weighted speedupB¥T-2/3 would drop by 0.05 shown as the bar labeld#r—T in Figure 6. For this policy,
(from 1.70, as indicated in Figure 1 or Table 4, to 1.65). all threads are swapped out on a load which takes more than

In all cases, increasinigo 35 increases the throughput of 20 cycles, excepart, gal gel , gap, gcc, andvpr, for
which! = 80. In all 4 cases, thBer—T policy performs better

BMT. However, with larger workloads, higher valued ofiay X i i X
reduce throughput. With a larger workload, it is more likely than any single value af With this policy, BMT2/4 gets an
additional 3% speedup over single-thread execution.

that there is a ready-to-run thread waiting to be swapped in¢ > i
The best single value dfdepends on the number of virtual e present the Per-T policy to show that there is bene-

and physical contexts, and the particular set of benchmarkdit from & dynamic policy which detects which threads have

However, an even better policy would be one which sets d'/9h memory level parallelism. To implement such a policy,
different value of for each thread. [ could be held in a counter which is periodically set to a

Itis profitable to delay swapping out a thread if it is likely 9h value, and which is decremented each time no concur-

that additional main memory accesses can be initiated by€t Misses occur.

waiting. As illustrated in Figure 7, benchmarks differ con-

siderably in the number of main-memory accesses that map-7 Quantifying the Cost of Additional Registers

occur in parallel. There is one subgraph for each bench-

mark we use. Theg-axis shows the probability that no ad- The weighted speedup results presented in this paper do
ditional main-memory accesses will be initiated following a not reflect any cycle time or pipeline length penalties that may

load which misses in the L2 cache. Theaxis shows time arise from adding physical contexts to a processor. In this

in cycles after the first miss. Note that only subsequent acsection, we attempt to quantify the cost of adding additional

cesses to different cache lines are counted. gearl amd  physical contexts to an SMT processor, as opposed to adding
ammp, when a load misses in the L2, it is highly unlikely that virtual contexts.

subsequent loads will initiate additional memory activity, so  Table 4 lists the different architectures studied in previous
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Type Cp n  WSU Rren Rphys tacc TMstg 218 — Bl ST
. 3 [ sSMT-2
Uni 1 1 1.00 128 190 0.46 § 16 = BMT-2/4
SMT 2 2 1.46 128 252 0.58 6 n
3 3 1.89 » 314 0.60 7 B 14
4 4 2.26 " 376  0.62 7 512
6 6 2.73 ” 500 0.65 7 g '
8 8 3.07 " 628 0.72 8 1
BMT-2 2 3 1.70 128 252 058 6 64 96 128
2 4 1.84 " " " Number of Renaming Registersrbrll?
2 6 176 " » "
BMT-4 4 6 2,57 128 376 0.62 7 ) ) . ) )
4 8 264 » ” » Figure 8. Speedup vs instruction window size.
BMT-6 6 12 293 128 500 0.65 - Weighted speedup is relative to single-thread
; execution with 128 renaming registers.
Cp the number of physical contexts
n the number of threads in workload
WSU  the weighted speedup
Ryen the number of addlt_lonal re_glsters for renaming 6 Conclusions
Ryhys  the number of physical registers
tace the register file access time (ns)
Nstg the estimated number of stages at 10 Ghz This paper explores the benefits of adding coarse-grained
threading support to an SMT processor, creating an architec-
Table 4. Performance and register file speed. ture we callBalanced Multithreading. SMT allows the pro-

cessor to tolerate even the smallest latencies. CGMT is suffi-

cient to tolerate long memory latencies. We present a form of

CGMT which requires no changes to timing-critical proces-
sections. The speedups shown are for the base memory cof°f resources such as the register file and the renaming table.
figuration (see Table 1). The last two columns show estimated he combination of the two results in a processor that pro-
of the register file access times for different architectures andides high single thread performance via a high clock rate,
an estimate of the number of clock cycles that it would re-Shorter pipeline and high instruction-level parallelism; and
quire if pipelined at 10 GHz. By this estimate, 3 additional high memory paraIIeI_lsm and thread-level parallelism when
pipeline stages would be needed for an 8 context SMT promore threads are available.
cessor, compared to an otherwise similar 1-context proces- We evaluate the combination of CGMT and SMT, over a
sor. Our access time estimates do not quantify several addfange of workload sizes, memory configurations, and several
tional costs of additional contexts. A slower register file readcONtext-switching optimizations, including a method for re-
time can add stages between issue and execute, which corlucing register saves.
plicates scheduling. A slower register file write time requires ~ We find thatin the face of long memory latencies, balanced
additional hardware to hold bypassed results longer. And 4nultithreading can provide instruction throughput similar to a
larger register file in turn increases the size of the renamingVide SMT processor, but without many of the hardware costs.
table. Also, the additional pipeline stages required to tolerate” particular, we show that by adding support for balanced
a larger register file fall in a particularly inopportune place in Multithreading, the throughput of an SMT processor can be
the pipeline. Lengthening the pipeline at this point increasedMProved by 26%, with no significant changes to the core of
load hit misspeculation penalties [4]. the processor, the cycle time, or the pipeline.
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