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Abstract

SMT processors increase performance by executing in-
structions from several threads simultaneously. These
threads use the resources of the processor better by shar-
ing them but, at the same time, threads are competing for
these resources. The way critical resources are distributed
among threads determines the final performance. Currently,
processor resources are distributed among threads as deter-
mined by the fetch policy that decides which threads enter
the processor to compete for resources. However, current
fetch policies only use indirect indicators of resource usage
in their decision, which can lead to resource monopoliza-
tion by a single thread or to resource waste when no thread
can use them. Both situations can harm performance and
happen, for example, after an L2 cache miss.

In this paper, we introduce the concept of dynamic re-
source control in SMT processors. Using this concept, we
propose a novel resource allocation policy for SMT proces-
sors. This policy directly monitors the usage of resources
by each thread and guarantees that all threads get their fair
share of the critical shared resources, avoiding monopoliza-
tion. We also define a mechanism to allow a thread to bor-
row resources from another thread if that thread does not
require them, thereby reducing resource under-use. Simula-
tion results show that our dynamic resource allocation pol-
icy outperforms a static resource allocation policy by 8%,
on average. It also improves the best dynamic resource-
conscious fetch policies like FLUSH++ by 4%, on average,
using the harmonic mean as a metric. This indicates that
our policy does not obtain the ILP boost by unfairly run-
ning high ILP threads over slow memory-bounded threads.
Instead, it achieves a better throughput-fairness balance.

1 Introduction

Superscalar processors increase performance by exploit-
ing instruction level parallelism (ILP) within a single ap-
plication. However, data and control dependences reduce
the ILP of applications. As a result, when the available
ILP is not high enough, many processor resources remain
idle and do not contribute to performance. Simultaneous
multithreaded (SMT) processors execute instructions from
multiple threads at the same time, so that the combined
ILP of multiple threads allows a higher usage of resources,
increasing performance [7][15][16][17]. However, threads
not only share the resources, they also compete for them.

In an SMT, resource distribution among threads deter-
mines not only the final processor performance, but also
the performance of individual threads. If a single thread
monopolizes most of the resources, it will run almost at
its full speed, but the other threads will suffer a slowdown
due to resource starvation. The design target of an SMT
processor determines how the resources should be shared.
If increasing IPC (throughput) is the only target, then re-
sources should be allocated to the faster threads, disregard-
ing the performance impact on other threads. However, cur-
rent SMT processors are perceived by the Operating Sys-
tem (OS) as multiple independent processors. As a result,
the OS schedules threads onto what it regards as processing
units operating in parallel and if some threads are favored
above others, the job scheduling of the OS could severely
suffer. Therefore, ensuring that all threads are treated fairly
is also a desirable objective for an SMT processor that can
not be quickly disregarded.

In current SMTs, resource distribution among threads is
either static or fully dynamic. A static resource distribution
(used, for example, in the Pentium 4) evenly splits the re-
sources among the running threads. This ensures that no
single thread monopolizes the resources and that all threads
are treated equally. This scheme suffers the same problem
as a superscalar processor: if any thread does not fully use
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the allocated resources, these are wasted and do not con-
tribute to performance. Dynamic sharing of resources is
accomplished by running all threads in a common resource
pool and allowing threads to freely compete for them. In
a dynamically shared environment, it is the fetch policy (I-
fetch) that actually controls how resources are shared. The
fetch policy determines which threads can enter the pro-
cessor to get the opportunity of using available resources.
However, current fetch policies do not exercise direct con-
trol over how resources are distributed among threads, us-
ing only indirect indicators of potential resource abuse by
a given thread, like L2 cache misses. Because no direct
control over resources is exercised, it is still possible that a
thread will obtain most of the processor resources, causing
other threads to stall. Also, to make things worse, it is a
common situation that the thread which has been allocated
most of the resources will not release them for a long period
of time. There have been fetch policies proposed [2][9] that
try to detect this situation, in order to prevent it by stalling
the thread before it is too late, or even to correct the situa-
tion by squashing the offending thread to make its resources
available to other threads [14], with varying degrees of suc-
cess. The main problem of these policies is that in their
attempt to prevent resource monopolization, they introduce
resource under-use, because they can prevent a thread from
using resources that no other thread requires.

In this paper, we show that the performance of an SMT
processor can significantly be improved if a direct control
of resource allocation is exercised. On the one hand, at any
given time, ‘resource hungry’ threads must be forced to use
a limited amount of resources. Otherwise, they could mo-
nopolize shared resources. On the other hand, in order to
allow ‘resource hungry’ threads to exploit ILP much better,
we should allow them to use as many resources as possible
while these resources are not required by the other threads.
This is the trade-off addressed in this paper.

In order to control the amount of resources given to each
thread, we introduce the concept of aresource allocation
policy. A resource allocation policy controls the fetch slots,
as instruction fetch policies do, but in addition it exercises a
direct control overall shared resources. This direct control
allows a better use of resources, reducing resource under-
utilization. The main idea behind a smart resource alloca-
tion policy is that each program has different resource de-
mands. Moreover, a given program has different resource
demands during the course of its execution. We show that
the better we identify these demands and adapt resource al-
location to them, the higher the performance of the SMT
processor gets.

In this paper, we propose such a resource allocation
policy called Dynamically Controlled Resource Allocation
(DCRA). DCRA first classifies threads according to the
amount of resources they require. This classification pro-

vides DCRA with a view of the demand that threads have
of each resource. Next, based on the previous classifica-
tion, DCRA determines how each resource should be dis-
tributed among threads. Finally, each cycle DCRA directly
monitors resource usage, without relying entirely on indi-
rect indicators. Hence, it immediately detects that a thread
is exceeding its assigned allocation and stalls that thread
until it no longer exceeds its allocation. Our results show
that our DCRA policy outperforms a static resource allo-
cation policy(SRA) [4][11][12] and also the best dynamic
resource-conscious fetch policies like FLUSH++ [1] in both
throughput and fairness [10]. Throughput results show that
DCRA improves SRA by 7% and FLUSH++ by 1%, on
average. Fairness results, using the harmonic mean as a
metric, indicate that DCRA outperforms SRA by 8% and
FLUSH++ by 4%, on average. Both results confirm that
DCRA achieves better throughput than the other policies
and in addition presents a better throughput-fairnessbalance
than them.

The remainder of this paper is structured as follows: we
present related work in Section 2. In Section 3 we present
our new policy. In section 4, we explain the experimen-
tal environment. Sections 5 presents the simulation results.
Conclusions are given in Section 6.

2 Related work

Current SMT processor proposals use either static re-
source allocation or fully flexible resource distribution.
The static sharing model [4][11][12] evenly splits critical
resources (mainly registers and issue queues) among all
threads, ensuring that any thread monopolizes a resource,
causing other threads to wait for that resource. However,
this method lacks flexibility and can cause resources to re-
main idle when one thread has no need for them, while the
other threads could benefit from additional resources.

An alternative to static partitioning of resources is to
have a common pool of resources that is shared among all
threads. In this environment, the fetch policy determines
how resources are shared, as it decides which threads enter
the processor and which are left out.

ROUND-ROBIN [15] is the most basic form of fetch and
simply fetches instructions from all threads alternatively,
disregarding the resource use of each thread.

ICOUNT [15] prioritizes threads with few instructions
in the pre-issue stages and presents good results for threads
with high ILP. However, an SMT has difficulties with
threads with high L2 miss rate. When this situation hap-
pens, ICOUNT does not realize that a thread can be blocked
and does not make progress for many cycles. As a result,
shared resources can be monopolized for a long time.

STALL [14] is built on top of ICOUNT to avoid the prob-
lems caused by threads with a high cache miss rate. It de-
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Figure 1. Main tasks of the DCRA policy

tects that a thread has a pending L2 miss and prevents the
thread from fetching further instructions to avoid resource
abuse. However, L2 miss detection already may be too late
to prevent a thread from occupying most of the available
resources. Furthermore, it is possible that the resources al-
located to a thread are not required by any other thread, and
so the thread could very well continue fetching instead of
stalling, producing resource under-use.

FLUSH [14] is an extension of STALL that tries to cor-
rect the case in which an L2 miss is detected too late by
deallocating all the resources of the offending thread, mak-
ing them available to the other executing threads. How-
ever, it is still possible that the missing thread is being pun-
ished without reason, as the deallocated resources may not
be used (or fully used) by the other threads. Furthermore,
by flushing all instructions from the missing thread, a vast
amount of extra fetch and power is required to redo the work
for that thread.

FLUSH++ [1] based on the idea that STALL performs
better than FLUSH for workloads that do not put a high
pressure on resources, that is, workloads with few threads
that have high L2 miss rate. Conversely, FLUSH performs
better when a workload has threads that often miss in the
L2 cache, and hence the pressure on the resources is high.
FLUSH++ combines FLUSH and STALL: it uses cache be-
havior of threads to switch among FLUSH and STALL in
order to provide better performance.

Data Gating (DG) [2] attempts to reduce the effects of
loads missing in the L1 data cache by stalling threads on
each L1 data miss. However, when a L1 miss does not
cause an L2 miss there is not resource abuse. We have mea-
sured that for memory bounded threads less than 50% of L1
misses cause an L2 miss. Thus, to stall a thread every time
it experiences an L1 miss may be too severe.

Predictive Data Gating (PDG) [2] and DC-PRED [9]
work like STALL, that is, they prevent a thread from fetch-
ing instructions as soon as a cache miss is predicted. By
using a miss predictor, they avoid detecting the cache miss
too late, but they introduce yet another level of speculation
in the processor and may still be saving resources that no
other thread will use. Furthermore, cache misses prove to
be hard to predict accurately [18], reducing the advantage
of these techniques.

Recently, IBM has presented the Power5 [8] that has 2

cores where each core is a 2-context SMT. However, no in-
formation about resource assignment inside a core has been
released.

Our technique, DCRA, first dynamically determines the
amount of resources required by each thread and prevents
threads from using more resources than they are entitled to
use. We continuously monitor the processor and redistribute
resources as threads change from one phase to another, or
when they do not require resources that they needed before.
In the following sections we describe how our mechanism
determines which threads are resource-hungry, which re-
quire few resources, and the resource allocation model to
distribute resources among all threads.

3 The DCRA policy

To perform an efficient resource allocation, it is nec-
essary to take into account the different execution phases
of a thread. Most threads have different behavior patterns
during their execution: they alternate high ILP phases and
memory-bounded phases with few parallelism, and thus
their resource needs change dynamically. We must take into
account this varying behavior in order to allocate resources
where they will be best used, and also to allocate resources
where they are needed most.

Figure 1 shows a diagram of how resource allocation
policies like DCRA, work. DCRA first dynamically clas-
sifies threads based on the execution phase they are in, high
ILP or memory-bounded (Section 3.1.1). Next, we deter-
mine which resources are being used by each thread in the
phase it is in (Section 3.1.2). After that, DCRA uses a shar-
ing model to allocate resources to threads based on the clas-
sification previously made (Section 3.2). Finally, the shar-
ing model also ensures that threads do not exceed their al-
located resources.

Our model bases on the fact that threads without out-
standing L2 misses require less resources to exploit ILP
than threads with L2 misses. Figure 2 shows the average
IPC as we vary the amount of resources given to SPEC 2000
benchmarks when executed in single-thread mode and the
data L1 cache is perfect1. For this experiment we use 160

1the average results for the FP registers and issue queue were obtained
only from FP benchmarks

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) 
1072-4451/04 $20.00 © 2004 IEEE 



0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

12.5 25 37.5 50 62.5 75 87.5 100
% of resources given to threads

%
 o

f f
ul

l s
pe

ed

Integer IQ

Load/Store IQ

FP IQ

Integer Registers

FP Registers

Figure 2. Average IPC of SPEC benchmarks
as we vary the amount given to them when
the data L1 cache is perfect.

rename registers, 32-entry issue queues, and the remainder
parameters of our baseline configuration shown in Section
4. For example, the point 25% for the integer IQ shows
the average IPC when benchmarks are allowed to use 25%
of the integer IQ and all other resources. In general we see
that with few resources threads run at almost the same speed
than when they use all the resources of the machine (full
speed). We see that only with 37.5% of resources (12 IQ en-
tries and 60 physical registers) threads run at approximately
90% of their full speed.

Our objective is to give additional resources to memory-
bound threads as these resources are clearly not needed by
threads without outstanding cache misses. By giving more
resources to missing threads we obtain benefits as we give
the out-of-order mechanism more opportunity to overlap
multiple L2 misses, increasing the memory parallelism of
the application without really harming the performance of
the remaining threads.

3.1 Thread classification

DCRA classifies threads based on how many resources
they need to efficiently exploit ILP depending on the phase
of the thread. Moreover, each thread is classified depend-
ing on which critical resources it actually uses and which
resources it does not need. The DCRA classification is con-
tinuously re-evaluated to adapt to the changing behavior of
threads. Hence, it can dynamically adapt the resource allo-
cation to the specific needs of the running threads.

DCRA bases on the idea that resources for a thread will
be allocated according to both classifications, thread phase
and critical resources needed. On the one hand, threads in
a memory-bounded phase with difficulties to exploit ILP
will borrow resources from faster threads. On the other

hand, critical resources will only be distributed among those
threads which actually can use them.

3.1.1 Thread phase classification

It is important to note two points about the thread classifi-
cation made by DCRA. First, we do not classify a thread
for its entire lifetime: we distinguish the different phases
in a thread’s execution, adapting to the dynamic changes in
resource requirements. Second, our policy does not need
to know the exact amount of each resource that a thread
needs. We only classify threads into those requiring few re-
sources to achieve high-performance, and those with higher
requirements, so that one thread group can temporarily give
additional resources to the other group.

We classify threads in two groups: theFast group, and
the Slow group. We use cache behavior to determine in
which group to place a thread. When a thread experiences a
cache miss, it runs much slower than it could and it holds re-
sources that will not be released for a potentially long time:
until the missing load is committed, each instruction holds
a reorder buffer (ROB) entry and, many of them, a physi-
cal register. Also, all instructions depending on the missing
load hold an instruction queue (IQ) entry without making
any progress as long as the offending load is not resolved.
On the other hand, threads which do not experience cache
misses are able to exploit ILP with few resources. Please,
note that they still require IQ entries and physical regis-
ters, but they release these resources shortly after allocating
them, so they are able to run on a reduced set of resources.

After having explored several possibilities, we classify
threads based on L1 data cache misses. Threads with pend-
ing L1 data misses are classified in the slow group, because
they may allocate resources for a long period of time, and
threads with no pending L1 data cache misses are classi-
fied in the fast group, because they will be able to run on a
rapidly cycling set of resources.

3.1.2 Resource usage classification

Given the classification described above, we could al-
ready distribute resources among threads taking into ac-
count which ones require additional resources and which
ones can do with less than their equal share. However, not
all threads use every available resource in the processor dur-
ing their entire lifetime and assigning them resources of a
type that is not required would effectively be wasting these
resources. For that reason, we also classify each thread as
activeor inactivewith regard to several processor resources.
We proceed as follows: every time a thread uses a given re-
source, it is classified asactive for the followingY cycles.
If the thread did not use this resource after the assignedY
cycles, the thread is classified asinactive until it uses that
type of resource again.
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If a thread is classified as inactive for a given resource,
then we assume that it does not compete for the resource
and its share can be evenly split among the remaining com-
peting threads. In our setup this method is effective for the
floating point resources when a thread is in an integer com-
putation phase. In other SMT configurations using other
types of resources, e.g., vector resources [3], this method
would also be effective. Note that the activity classification
is associated to a specific type of resource and that a thread
can be active with respect to a certain resource and inactive
with respect to others.

The thread phase classification and the resource usage
classification are orthogonal. Hence, for each resource we
have 4 possible classifications for a thread: fast-active (FA),
fast-inactive (FI ), slow-active (SA), and slow-inactive (SI ).
The main characteristics of this classification are that inac-
tive threads (XI ) do not use their share of a given resource
and that slow threads (Sx) require more resources to exploit
ILP than fast threads (Fx) do.

3.2 The sharing model

The sharing model determines how shared resources are
distributed among threads. A key point in any sharing
model is to be aware of the requirements of each group of
threads: the more accurate the information, the better the
sharing.

Our sharing model starts from the assumption that all
threads receive an equal share of each shared resource. On
average, each thread getsE entries of each resource, given
in the equation (1), whereR is the total number of entries
of that resource andT is the number of running threads.

E =
R

T
(1)

Next, we take into account that slow threads require
more resources than fast threads. Hence, fast threads can
share part of their resources with slow threads. This way,
slow threads are assigned their equal share and also borrow
some additional resources from those threads that can do
without them. This introduces asharing factor, C, that de-
termines the amount of resources that fast threads give to
each slow thread. The value ofC depends on the number
of threads: if there are few threads, then there is little pres-
sure on resources and many resources are assigned to each
thread. Hence, fast threads have more resources to lend out.
We have tested several values for this sharing factor and
C = 1

T+4
gives the best results for low memory latencies.

With this sharing model, slow threads increase their share
with the resources given to them by fast threads. Hence
each of the slow threads is entitled to use at mostEslow en-
tries, as shown in equation (2), whereF is the number of
fast threads.

Eslow =
R

T
(1 + C ∗ F ) (2)

At this point, our sharing model takes into account which
threads require more resources and which threads can give
part of their share to these resource-hungry threads. How-
ever, we still do not account for the fact that not all threads
use every type of resource in the processor. To account
for this information, we use a separate resource allocation
for each type of resource and take into account that threads
which are inactive for a certain resource (those in theSI and
FI groups) can give their entire share of that resource to the
other threads. Hence, each active thread hasE = R

FA+SA

reserved entries of a resource, since inactive threads do not
compete for them. Moreover, we have to consider that fast
active threads also share a part of their resources with slow
active threads, as determined by the sharing factorC, which
we re-define asC = 1

FA+SA
. Hence, the number of entries

that each slow active thread is entitled to use is re-defined
as:

Eslow =
R

FA + SA

(1 + C ∗ FA) (3)

This final model distributes resources only among active
threads, those actually competing for them, and gives more
resources to threads in the slow phases, taking them from
the threads in high ILP phases.

entry FA SA Eslow

1 0 1 32
2 1 1 24
3 0 2 16
4 2 1 18
5 1 2 14
6 0 3 11
7 3 1 14
8 2 2 12
9 1 3 10
10 0 4 8

Table 1. Pre-calculated resource allocation values for a
32-entry resource on a 4-thread processor.FA andSA de-
note the number of fast and slow active threads respectively

Example. Assume a shared resource with 32 available
entries in a processor that runs 4 threads. Table 1 shows
the resource allocation of slow active threads for all cases
in this example situation. In case that all threads are in a
slow phase and active for that resource (table entry 10), they
would receive 8 entries each. In case where 3 threads are in
the fast group and 1 is in the slow group, all active for the
resource (table entry 7), the slow thread would be allocated
14 entries, leaving 18 entries for the fast threads. In case
where 3 threads are in the fast group (1 is inactive for the
resource and 2 are active), and 1 is in the slow group (table
entry 4), the slow thread would be allocated 18 entries, and
the fast active threads would be left with 14 entries. The
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inactive fast thread does not allocate any entries for this re-
source. The other entries are computed in the same way.

3.3 Resource allocation policies vs. Instruction
fetch policies

The main differences between a dynamic allocation poli-
cies, like DCRA, and an I-fetch policy are the following: the
input informationinvolved and theresponse action.

• The input information is the information used by the
policy to make decisions about resource assignment.
Usually, this information consists of indirect indicators
of resource use, like L1 data misses or L2 data misses.

• The response action is the behavior of a policy to con-
trol threads. For example, this response action could
be to stall the fetch of a thread.

I-fetch policies just control the fetch bandwidth. All I-
fetch policies we have seen, except ICOUNT and ROUND-
ROBIN, stall the fetch of threads. FLUSH, in addition,
squashes all instructions of the offending thread after a
missing load. As input information, I-fetch policies use in-
direct indicators, like L1 misses or L2 misses, as we have
seen in the Related Work Section.

Allocation policies control fetch bandwidth, as I-fetch
policies do. As shown in [15], the fetch bandwidth is a key
parameter for SMT processors. Hence, control of this re-
source is essential. In addition, an allocation policies con-
trols all shared resources in an SMT processor, since the
monopolization of any of these resources causes a stall of
the entire pipeline. As input information, allocation poli-
cies uses indirect indicators and, in addition, information
about the demand and availability of resources. The more
accurate the information, the better the resource allocation.

The key point is that I-fetch policies are not aware of
the resource needs of threads. They just assume that re-
source abuse happens when an indirect indicator is acti-
vated. That is, indicators are perceived as abuse indicators
and, as a consequence, when any of them is activated, the
I-fetch policy immediately stalls or flushes a thread. An al-
location policy perceives indirect indicators as information
on resource demand. As a consequence, it does not im-
mediately take measures on threads with high resource de-
mands. Instead, it computes the overall demand as well as
the availability of resources. Then it splits shared resources
and fetch bandwidth between threads based on this infor-
mation. Notice that the objective of our policy is to help,if
possible, threads in slow phases, i.e., those threads experi-
encing cache misses. In contrast, previously proposed fetch
policies proceed the other way around by stalling/flushing
those threads experiencing cache misses.

Other important information to take into account is the
number of running threads, because this number deter-
mines the pressure on resources. The higher the number
of threads, the higher the pressure. Current I-fetch policies
do not take this information into account and, as a result,
the response action they take may be inadequate. Alloca-
tion policies use this information when sharing resources
between threads and hence the resource allocation complies
with the demand for resources.

3.4 Implementation of the allocation policy

Figure 3 shows the processor modifications required for
a possible implementation of our dynamic allocation policy.
The modifications focus on two main points:

First, DCRA requires 8 counters per thread (7 resource
usage counters and one additional counter to track pending
L1 data misses). Like ICOUNT, DCRA tracks the num-
ber of instructions in the IQs, but distinguishing each of
the three IQ types: integer, fp, and load/store. DCRA also
tracks physical registers (integer and fp) and hence 2 more
counters are required. As shown below, these two counters
are incremented in the decode stage and decremented when
the instructions commit. Hence, DCRA does not affect the
register file design. To detect inactive threads we maintain
an activity counter for each floating point resource: fp is-
sue queue and fp physical registers. Finally, like DG and
PDG, DCRA keeps track of L1 data misses. The additional
complexity required to introduce these counters depends on
the particular implementation, but we do not expect it to be
more complex than other hardware counters already present
in most architectures. Resource usage counters are incre-
mented in the decode stage (indicated by(1) in Figure 3).
Issue queue usage counters are decremented when instruc-
tions are issued for execution (2). Register usage counters
are decremented when the instruction commits (3), hence
the file register is left unchanged. Pending cache miss coun-
ters are incremented when new misses are detected (4), and
decremented when misses are serviced (5). The activity
counter is initialized to 256.2 This counter is decremented
each cycle if the thread does not allocate new entries of that
type of resource, and reset to 256 if the thread requires that
resource (6). If the counter reaches zero, we classify the
thread as inactive for that resource.

Second, concerning the sharing model, DCRA also
needs simple control logic to implement this. This logic
provides fixed, pre-computed calculations and hence it does
not need write logic. Each cycle the sharing model checks
that the number of allocated entries of slow active threads
does not exceed the number that has been assigned to them.
If such a thread allocates more resources, it is fetch-stalled

2We use several values for this parameter ranging from 64 to 8192 and
this value gives the best overall results.
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Figure 3. Possible implementation of our dynamic allocation policy

until it releases some of the allocated resources. Otherwise,
it is allowed to enter the fetch stage and compete for re-
sources. Recall that the fast-active threads are left unre-
stricted, being allowed to allocate as many resources as the
SA threads leave them, and the inactive threads are not al-
locating any entry for that resource.

The sharing model may be implemented in two ways:

• Using a combinational circuit implementing Formula
3 (the final resource allocation equation). The circuit
receives as inputs the number of threads in each active
group (FA, SA), 6 bits in case of a 4-context SMT. It
provides the number of entries that eachSA threads is
entitled to allocate.

• Alternatively, the sharing model could also be imple-
mented with a direct-mapped, read-only table indexed
with the number ofSA andFA threads. For a 4-context
processor, this table would have 10 entries. Changing
the sharing model would be as easy as loading new val-
ues in this table. This is convenient, for example, when
the memory latency changes.

Notice that we need two different circuits: one for the
IQs and one for the registers.

4 Methodology

To evaluate the performance of the different policies,
we use a trace driven SMT simulator derived from SMT-
SIM [16]. The simulator consists of our own trace driven
front-end and an improved version of SMTSIM’s back-end.
The simulator allows executing wrong path instructions by
using a separate basic block dictionary that contains all
static instructions. Table 2 shows the main parameters of

the simulated processor. This processor configuration rep-
resents a standard and fair configuration according to state-
of-the-art papers in SMT.

We have fixed the number of physical register instead of
the number of rename register. We use a register file of 320
physical registers, which means that we have160 = 320 −
(32×4) rename registers when 4 threads are run, 224 when
there are 3 threads, and 256 when there are 2 threads. On
the other hand, in order to take into account timing effects
of the register file, we assume two-cycle accesses.

Processor Configuration

Pipeline depth 12 stages
Fetch/Issue/Commit Width 8
Queues Entries 80 int, 80 fp, 80 ld/st
Execution Units 6 int, 3 fp, 4 ld/st
Physical Registers 352
(shared)ROB size 512 entries

Branch Prediction Configuration

Branch Predictor 16K entries gshare
Branch Target Buffer 256-entry, 4-way associative
RAS 256 entries

Memory Configuration

Icache, Dcache 64 Kbytes, 2-way, 8-bank, 64-byte
lines, 1 cycle access

L2 cache 512 Kbytes, 8-way, 8-bank, 64-byte
lines, 20 cycle access

Main memory latency 300 cycles
TLB miss penalty 160 cycles

Table 2. Baseline configuration

Traces of the benchmarks are collected of the most repre-
sentative 300 million instruction segment, following an idea
presented in [13]. We use all programs from the SPEC2000
integer and fp benchmark suite. Each program is exe-
cuted using the reference input set and compiled with the
−O2−non shared options using DEC Alpha AXP-21264
C/C++ compiler. Programs are divided into two groups
based on their cache behavior (see Table 3): those with an
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# of Thread Workload Workload Workload Workload
threads type group 1 group 2 group 3 group 4

ILP gzip, bzip2 wupwise, gcc fma3d, mesa apsi, gcc
2 MIX gzip, twolf wupwise, twolf lucas, crafty equake, bzip2

MEM mcf, twolf art, vpr art, twolf swim, mcf
ILP gcc, eon, gap gcc, apsi, gzip crafty, perl, wupwise mesa, vortex, fma3d

3 MIX twolf, eon, vortex lucas, gap, apsi equake, perl, gcc mcf, apsi, fma3d
MEM mcf, twolf, vpr swim, twolf, equake art, twolf, lucas equake, vpr, swim
ILP gzip, bzip2, eon, gcc mesa, gzip, fma3d, bzip2 crafty, fma3d, apsi, vortex apsi, gap, wupwise, perl

4 MIX gzip, twolf, bzip2, mcf mcf, mesa, lucas, gzip art, gap, twolf, crafty swim, fma3d, vpr, bzip2
MEM mcf, twolf, vpr, parser art, twolf, equake, mcf equake, parser, mcf, lucas art, mcf, vpr, swim

Table 4. Workload classification based on cache behavior of threads.

Benchmark Benchmark L2 cache
type name miss rate

mcf 29.6
INTEGER twolf 2.9

vpr 1.9
parser 1.0

art 18.6
FP swim 11.4

lucas 7.47
equake 4.72

(a) MEM threads

Benchmark Benchmark L2 cache
type name miss rate

gap 0.7
vortex 0.3

gcc 0.3
INTEGER perl 0.1

bzip2 0.1
crafty 0.1
gzip 0.1
eon 0.0
apsi 0.9

FP wupwise 0.9
mesa 0.1
fma3d 0.0

(b) ILP threads

Table 3. Cache behavior of each benchmark

L2 cache miss rate higher than 1% are considered memory
bounded (MEM). The others are considered ILP. It is vital
to differentiate among program types and program phases.
The program type concerns the L2 miss rate. Obviously, a
MEM program experiences many slow phases, more than
an ILP program. However, ILP programs also experience
slow phases and MEM programs fast phases.

The properties of a workload depend on the number of
threads in that workload and the memory behavior of those
threads. In order to make a fair comparison of our policy,
we distinguish three types of workloads: ILP, MEM, and
MIX. ILP workloads contain only high ILP threads, MEM
workloads contain only memory-bounded threads (threads
with a high L2 miss rate), and MIX workloads contain a
mixture of both. We consider workloads with 2, 3, and 4
threads. We do not include workloads with more than 4
threads because several studies [5, 6, 16] have shown that
for workloads with more than 4 contexts, performance satu-
rates or even degrades. This situation is counter productive
because cache and branch predictor conflicts counteract the

additional ILP provided by the additional threads.
A complete study of all benchmarks is not feasible due

to excessive simulation time: all possible combinations of
2, 3 and 4 benchmarks give more than 10,000 workloads.
We have used the workloads shown in Table 4. Each work-
load is identified by 2 parameters: the number of threads it
contains and the type of these threads (ILP, MIX, or MEM).
Hence, we have 9 workload types. As can be seen in Ta-
ble 4, we have built 4 different groups for each workload
type in order to avoid that our results are biased toward a
specific set of threads. Benchmarks in each group have been
selected randomly. In the result section, we show the aver-
age results of the four groups, e.g., the MEM2 result is the
mean of themcf+twolf, art+vpr, art+twolf, and
swim+mcf workloads.

5 Performance evaluation

We compare our DCRA policy with some of the
best fetch policies currently published: ICOUNT [15],
STALL[14], FLUSH[14], FLUSH++[1], DG[2] and
PDG[2]. Our results show that for the setups examined
in this paper, FLUSH++ outperforms both STALL and
FLUSH, and DG outperforms PDG. Hence, for brevity, we
only show the results for ICOUNT, FLUSH++, and DG. We
also compare DCRA with a static resource allocation that
evenly distributes resources among threads.

Several performance metrics have been proposed for
SMT processors. Some of these metrics try to balance
throughput and fairness [10]. We use separate metrics for
the raw execution performance and for execution fairness.
For performance, we measure IPC throughput, the sum of
the IPC values of all running threads, as it measures how
effectively resources are being used. However, increasing
IPC throughput is only a matter of assigning more resources
to the faster threads and hence measuring fairness becomes
imperative. We measure fairness using theHmean metric
proposed in [10], as it has been shown that it offers better
fairness-throughput balance thanWeighted Speedup [14].
Hmean measures the harmonic mean of the IPC speedup
(or slowdown) of each separate thread, exposing artificial
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throughput improvements achieved by providing resources
to the faster threads.

5.1 Dynamic vs. static allocation

In this section, we compare DCRA with a static model
in which each thread is entitled to use an equal share of
resources. A recent study [12] quantifies the impact of par-
titioning the IQs and other shared resources in an SMT pro-
cessor. Regarding the IQs, the authors reach two impor-
tant conclusions. First, moving from a fully shared IQ to a
evenly divided IQ has a negligible impact on performance.
Second, they conclude that it is quite challenging to obtain
significant benefits from a non-uniform IQ allocation.

We agree that a non-uniform allocation of the IQs does
not provide significant benefits, but only if this is done with-
out considering dynamic program behavior. That is, if this
is done in a fixed way for the entire execution of the pro-
gram. However, our dynamic sharing model provides a
non-uniform issue queue allocation, where resource alloca-
tion varies with program phases (programs with temporar-
ily more resource requirements are entitled to use some
resources of threads with lower requirements) and where
threads not using a resource give their share to the other
threads.
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Figure 4. Throughput/Hmean results of DCRA
compared to static resource allocation

Figure 4 shows the improvement of our dynamic model
over the static one. We observe that our dynamic model out-
performs the static model for all workloads: 7% in through-
put and 8% in fairness, on average.

We also observe that the improvements of the dynamic
over the static model are higher for the MIX workloads. In
order to provide more insight in this issue, Table 5 shows
how often threads in 2-thread workloads are either in the
same phase or in different phases. The key point is that
DCRA is more effective than SRA when threads are in dif-
ferent phases, the most common case for the MIX work-

WORKLOAD SLOW - SLOW FAST-SLOW FAST - FAST
TYPE SLOW-FAST

ILP 7.8 41.4 50.8
MIX 25.6 63.2 11.2
MEM 85.0 14.7 0.3

Table 5. Distribution of threads in phases for
2-thread workloads
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Figure 5. Throughput/Hmean improvement of
DCRA over ICOUNT, FLUSH++, and DG.

loads (63% of the time). For ILP and MEM workloads, this
situation is not so common, see Table 5. However, DCRA
also is efficient for ILP and MEM workloads because it also
classifies threads according to resource usage.

5.2 DCRA vs. I-fetch policies

In this subsection, we compare the DCRA policy with
ICOUNT, FLUSH++, and DG.

Figure 5(a) shows the IPC throughput achieved by
DCRA and the other fetch policies. We observe that DCRA
achieves higher throughput than any of the other fetch poli-
cies for all workloads, except for FLUSH++ in the MEM
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workloads. The advantage of FLUSH++ over DCRA is due
to the fact that for the MEM workloads, especially for the
4-MEM workloads, there is an overpressure on resources:
there is almost no throughput increase when going from the
3-MEM workloads to the 4-MEM workloads. As a conse-
quence of this high pressure on resources, it is preferable to
free resources after a missing load than try to help a thread
experiencing cache misses. On average, DCRA improves
ICOUNT by 24%, DG by 30%, and FLUSH++ by 1%.

Regarding Hmean results, shown in Figure 5(b), DCRA
improves all other policies. On average, DCRA improves
FLUSH++ by 4%, ICOUNT by 18% and DG by 41%.
Again, the FLUSH++ policy performs better than DCRA in
the MEM workloads, for the same reasons described above.

However, the slight performance advantage of
FLUSH++ over DCRA in the MEM workloads comes
at a high cost: every time a thread is flushed to reclaim
its resources for the other threads, instructions from the
offending thread must be fetched, decoded, renamed, and
even sometimes executed again. We have measured this
overhead, and for 300 cycles of memory latency, FLUSH++
fetches 108% more instructions than DCRA. That is a2X
increase in activity for the processor’s front-end.

The advantage of DCRA over the other resource-
conscious fetch policies is that it allows the memory-bound
thread to continue executing instructions with an increased
-but limited- resource share. This increased resource as-
signment allows the thread to launch more load operations
before stalling due to resource abuse, and increases the
memory parallelism of memory-bound applications while
high ILP ones do not suffer much (as shown in Figure 2).
We have measured the increase in the number of over-
lapping L2 misses while using DCRA compared to using
FLUSH++, and we have found an average increase of 18%
in the memory parallelism of the workloads (22% increase
in ILP workloads, 32% in MIX workloads, and 0.5% in
MEM workloads).

Further analysis of the MEM workloads shows that
DCRA is adversely affected by degenerate cases likemcf.
Our results show a 31% increase in the number of overlap-
ping misses formcf, however, this increase is hardly visible
in the overall processor performance due to the extremely
low baseline performance, and comes at the expense of
slightly decreased performance of other threads. That ex-
plains why FLUSH++ handlesmcf better than DCRA, giv-
ing it the advantage in MEM workloads. Future work will
try to detect these degenerate cases in which assigning more
resources to a thread does not contribute at all to increased
overall results or results in overall performance degradation.

5.3 Sensitivity to resources

In this section, we show how the improvement of DCRA
over other alternatives depends on the amount in resources
of the processor. It seems obvious that if we increase the
amount of resources, sharing them among threads should
be an easier task, as we diminish the risk that threads starve
for lack of resources. However, we show that long latency
events (such as L2 cache misses) can still cause resource
monopolization by a single thread, regardless of the amount
of resources available.

Register file

Figure 6 shows the average performance improvement of
DCRA over ICOUNT, FLUSH++, DG, and SRA, as we
change the number of physical registers from 320 to 384
entries. For this experiment, we have used 80-entry queues
and a memory latency of 300 cycles.
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Figure 6. Hmean improvement of DCRA over
other mechanisms as we change the register
pool size.

We see that as we increase resources, the performance
advantage of DCRA over SRA and ICOUNT diminishes
since each thread receives more resources and the possibil-
ities for starvation are reduced.

Regarding DG, we observe that as we increase the
amount of resources, the advantage of DCRA also in-
creases. This is caused by the fact that as we increase
the size of the register pool, stalling threads on every L1
miss leads to a higher resource under-use. The comparison
with FLUSH++ indicates a similar result: the objective of
FLUSH++ is to make resources available to other threads
after a missing load. While these deallocated resources
may be necessary when there are few register, they become
less important when the amount of resources is increased.
We conclude that as we increase the register file size, the
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amount of resource under-use introduced by FLUSH++ also
increases, making DCRA a better option.

We also performed a similar analysis varying the size
of the Instruction Queues, and obtained very similar results
and conclusions. These are not shown due to lack of space.

Memory latency

As we have seen in this paper, memory-bounded threads
require many resources to exploit ILP and will not release
them for a long time. We now examine how the memory
latency has an impact on the performance of DCRA and the
other policies considered.

Figure 7 shows the average performance improvement of
DCRA over the other policies as we change the change the
memory latency from 100 to 300, and 500 cycles and the L2
latency from 10 to 20, and 25 cycles. For this experiment,
we use 352 physical registers and 80-entry queues. Note
that as latency increases we must be less aggressive sharing
resources to SLOW threads as they retain these resources
for longer time. In order to take into account this fact we use
a different sharing factor, C, for each latency. For the 100-
cycle latency the best results are obtained whenC = 1/T .
For a latency of 300 cycles when C=1/(T+4). Finally for the
500-cycle latency we use a sharing factorC = 0 for the IQs
andC = 1/(T + 4) for the registers.
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Figure 7. Hmean improvement of DCRA over
fetch policies and SRA as we change the
memory latency.

We observe that both DCRA and SRA suffer a simi-
lar penalty as the memory latency increases, but that both
policies are still safe against the problem of resource mo-
nopolization. However, DCRA slightly increases its perfor-
mance advantage due to its ability to dynamically move re-
sources from threads which can do without them to threads
which really can put them to use.

The results for ICOUNT show that it suffers a high per-
formance penalty as the memory latency increases, as it is

the only policy that does not take into account the memory
behavior of threads. With increasing memory latencies, the
problem of resource monopolization becomes even more
severe, as the resources will not be available to others for
even longer periods of time.

DCRA also improves its performance compared to DG
when the memory latency increases. FLUSH++ is the only
policy which reduces the performance advantage of DCRA
as the latency increases. Given that FLUSH++ actually
deallocates the resources of a thread missing in L2 and
makes them available again to the remaining threads, it is
able to use resources more effectively as they are allocated
on-demand. The threads which did not miss in cache can
use all the processor resources to exploit ILP. As much as
DCRA prevents resource monopolization, the resources al-
located by a missing thread are still not available to the other
threads.

However, as we mentioned before, this increased flexi-
bility in resource allocation comes at the cost of significant
increases in the front-end activity. Instructions from the
flushed thread have to be fetched, decoded, renamed, and in
some cases re-executed after the missing load is resolved.
Our measurements indicate a 108% increase in front-end
activity for 300 cycles of memory latency, and a 118% in-
crease for 500 cycles. If we account for the2X increase
in front-end activity and the negative effect of degenerate
cases likemcf on DCRA performance (which we expect to
fix in future work), we believe that DCRA offers a better
alternative than FLUSH++.

From these results, we conclude that DCRA offers im-
proved throughput and fairness balance for moderately
sized processors. Moreover, as we increase the amount of
available resources and the memory latency, which is cur-
rently happening in high performance processors, the im-
portance of correctly managing resources increases, making
DCRA an even better alternative for future SMT designs.

6 Conclusions

The design target of an SMT processor determines how
shared resources should be shared. If a fair treatment of all
threads is required, then a static partitioning of resources
is an attractive design choice. If IPC throughput is to be
valued above all else, a dynamic partitioning of resources
where all threads compete for a pool of shared resources is
required. Current dynamically partitioned designs depend
on the fetch policy for resource allocation. However, the
fetch policy does not directly control how many resources
are allocated to a thread and current policies can cause both
resource monopolization and resource under-use, obtaining
less than optimal performance.

We have proposed to use a direct resource allocation pol-
icy, instead of fully relying on the fetch policy to determine
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how critical resources are shared between threads. Our dy-
namic resource allocation technique is based on a dynamic
classification of threads. We identify which threads are
competing for a given resource and which threads should be
able to give part of their resources to other threads without
damaging performance. Our technique continuously dis-
tributes resources taking these classifications into account
and directly ensures that no resource-hungry thread exceeds
its rightful allocation.

Our results show that DCRA outperforms both static
resource allocation and previously proposed fetch policies
for all evaluated workloads. Throughput results show that
DCRA improves SRA by 8%, ICOUNT by 24%, DG by
30%, and FLUSH++ by 1%, on average. The average
Hmean improvement of DCRA is 7% over SRA, 18% over
ICOUNT, 41% over DG, and 4% over FLUSH++. These
results confirm that DCRA does not obtain the ILP boost by
unfairly preferring high ILP threads over slower memory-
bounded threads. On the contrary, it presents a better
throughput-fairness balance. Summarizing, we propose a
dynamic resource allocation policy that obtains a better
throughput-fairness balance than previously proposed poli-
cies, making it an ideal design point for both throughput and
fairness oriented SMT designs.
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