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Abstract

Microprocessors are traditionally designed to provide
“best overall” performance across a wide range of applica-
tions and operating environments. Several groups have pro-
posed hardware techniques that save energy by “downsiz-
ing” hardware resources that are underutilized by the cur-
rent application phase. Others have proposed a different
energy-saving approach: dividing the processor into do-
mains and dynamically changing the clock frequency and
voltage within each domain during phases when the full do-
main frequency is not required. What has not been studied
to date is how to exploit the adaptive nature of these ap-
proaches to improve performance rather than to save en-
ergy.

In this paper, we describe an adaptive globally asyn-
chronous, locally synchronous (GALS) microprocessor with
a fixed global voltage and four independently clocked do-
mains. Each domain is streamlined with modest hardware
structures for very high clock frequency. Key structures can
then be upsized on demand to exploit more distant paral-
lelism, improve branch prediction, or increase cache capac-
ity. Although doing so requires decreasing the associated
domain frequency, other domain frequencies are unaffected.
Our approach, therefore, is to maximize the throughput of
each domain by finding the proper balance between the
number of clock periods, and the clock frequency, for each
application phase. To achieve this objective, we use novel
hardware-based control techniques that accurately and ef-
ficiently capture the performance of all possible cache and
queue configurations within a single interval, without hav-
ing to resort to exhaustive online exploration or expensive
offline profiling.
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Measuring across a broad suite of application bench-
marks, we find that configuring our adaptive GALS pro-
cessor just once per application yields 17.6% better per-
formance, on average, than that of the “best overall” fully
synchronous design. By adapting automatically to applica-
tion phases, we can increase this advantage to more than
20%.

1. Introduction

Microprocessor design traditionally embodies a tradeoff
between processor frequency and the hardware complexity
required to exploit instruction-level parallelism (ILP). Any
particular design is typically a compromise, because the
tradeoff is highly application dependent. Optimal pipeline
depth, for example, tends to vary across classes of applica-
tions,e.g.SPEC versus transaction processing [13, 21, 32].
While some applications benefit from a streamlined design
in which hardware complexity is kept relatively modest, in
favor of high clock rates, others benefit from a more com-
plex design that uses larger hardware structures to exploit
more ILP or to cache larger working sets, at the cost of a
lower clock rate. Studies have even demonstrated signifi-
cant variability in hardware requirements among the differ-
ent phases of a given application [8, 30, 34]. Any processor
designed for “best overall” performance inevitably makes
inefficient use of its hardware resources when running a var-
ied workload. This observation suggests the possibility of
dynamically optimizing the tradeoff between clock rate and
IPC (instructions per cycle) [1].

The simplest approach is to “downsize” underutilized
structures in order to save energy. Proposals to date in-
clude adaptive cache hierarchies [2, 8, 25], adaptive issue
queues [5, 11], and combinations including caches, issue
queues, register files, and the reorder buffer [9, 24].

A downsized structure often operates at a higher speed.
For instance, Buyuktosunoglu [5] demonstrated a 70% re-
duction in issue queue access time when downsizing from
32 entries to 8. Unfortunately, critical timing paths else-
where in the chip typically prevent this speedup from trans-
lating into an overall increase in clock rate.

If one aims to improve performance, an alternative strat-
egy [1] is to decrease global frequency when one or more
structures are “upsized”. This strategy preserves the cor-
rectness of critical timing paths, but succeeds only when the
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performance gained by upsizing some subset of the chip’s
hardware resources (e.g., the data cache hierarchy) exceeds
the performance lost by slowing down everything else, and
this is seldom the case. Most applications are sufficiently
balanced in their hardware usage that the performance cost
of a global slowdown easily exceeds the benefit of upsizing
a subset of the hardware resources.

Globally-Asynchronous, Locally-Synchronous (GALS)
microprocessors [15, 22, 29] offer a new opportunity to dy-
namically trade frequency for complexity within asubset
of the processor. In a previously proposed Multiple Clock
Domain (MCD) GALS design [29], the chip is broken
down into separate domains for (1) front-end fetch / rename,
(2) integer execution, (3) floating point execution, and (4)
load / store (L1 data cache and L2 cache). Clock frequency
can be varied in each domain independent of the others;
synchronization circuits are used on all cross-domain com-
munication paths. By varying voltage with frequency, sig-
nificant energy can be saved with only a modest loss in per-
formance [18, 27, 29].

In this paper, we take a completely different approach
from these prior energy-saving efforts: we use a fixed global
voltage and within each domain, we dynamically trade off
clock speed for increased hardware resources on a per-
phase basis in order to maximize domain throughput. We
begin with a baseline MCD processor in which each do-
main is optimized for high frequency, with relatively mod-
est hardware structures. We develop techniques (including
a completely new queue configuration control algorithm)
for dynamically upsizing key hardware structures (with an
accompanying decrease in domain frequency so as to meet
timing constraints on those paths) for per-application-phase
tailoring of the frequency / complexity tradeoff. In effect,
we trade frequency for complexity whenever an increase in
potential ILP provides IPC benefits that override the fre-
quency lossin that one domain. Key to our approach are
the hardware-based control algorithms that we develop for
each of the critical structures in each domain.

One downside of our approach is a higher branch mis-
predict penalty than is typical of fully synchronous de-
signs, due to the fact that our adaptive processor is “over-
pipelined” at lower frequencies. It also suffers a modest
frequency penalty in some configurations due to the abil-
ity to adapt, and a modest increase in execution time due
to the latency of cross-domain synchronization. Despite
these handicaps, we demonstrate overall performance im-
provements of 17.6% with respect to thebest fully syn-
chronous designusing only whole-program adaptation of
the instruction cache, branch predictor, integer issue queue,
floating-point issue queue, and data / L2 caches. When we
add adaptation algorithms that automatically detect phases
of program behavior and appropriately size structures and
set frequencies for each phase, the average performance im-

provement reaches 20.4%. These results reflect an exhaus-
tive exploration of the space of synchronous and whole-
program adaptive processor configurations, embodying ap-
proximately 300 CPU months of simulation time.

The rest of this paper is organized as follows. In the next
section, we describe the adaptive GALS microarchitecture,
in which structures can be upsized while lowering domain
frequency. We provide details of the structures that are re-
sized in each domain and the timings for each. Our adaptive
control algorithms are described in Section 3. Section 4 de-
scribes our experimental methodology; Section 5 presents
results. We discuss related work in Section 6, and conclude
in Section 7.

2. Adaptive GALS microarchitecture

The adaptive MCD microarchitecture highlighted in Fig-
ure 1 has four independent clock domains, comprising the
front end (L1 instruction cache, branch prediction, rename,
reorder buffer and dispatch); integer processing core (issue
queue, register file and execution units); floating-point pro-
cessing core (issue queue, register file and execution units);
and load / store unit (load / store queue, L1 data cache and
unified L2 cache). The dynamic frequency control circuit
within each of these domains is a PLL clocking circuit
based on industrial circuits [7, 10]. The lock time in our ex-
periments is normally distributed with a mean time of 15µs
and a range of 10–20µs. As in the XScale processor [7], we
assume that a domain is able to continue operating through
a frequency change. Main memory can be thought of as
a separate fifth domain, but it operates at a fixed base fre-
quency and hence is non-adaptive.

Data generated in one domain and needed in another
must cross a domain boundary, potentially incurring syn-
chronization costs. The MCD simulator models synchro-
nization circuitry based on the work of Sjogren and My-
ers [31]. It imposes a delay of one cycle in the consumer
domain whenever the distance between the edges of the two
clocks is within 30% of the period of the faster clock. Both
superscalar execution (which allows instructions to cross
domains in groups) and out-of-order execution (which re-
duces the impact of individual instruction latencies) tend
to hide synchronization costs, resulting in an average over-
all slowdown of less than 3% [28]. Further details on the
baseline MCD model, including a description of the inter-
domain synchronization circuitry, can be found in prior pa-
pers [18, 27, 28, 29].

For this study we add adaptive structures to the baseline
MCD domains. The resultingadaptive MCD architecture
has a base configuration with small and simple structures
running at a very high clock rate. For applications that per-
form better with additional resources, key structures can be
upsized with a corresponding reduction in the clock rate of
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Figure 1. Adaptive MCD microarchitecture. Boxes with multiple borders indicate resizable structures.

their domain. Unaffected domains still run at their base high
clock rate.

Having adaptable structures and a variable clock means
that structures may be safely oversized. The greater capac-
ity (and lower domain frequency) is used only if an appli-
cation attains a net benefit. Applications that do not require
the extra capacity configure to a smaller size and run at a
higher frequency. This approach permits the tradeoff be-
tween per-domain clock rate and complexity to be made for
each application or application phase.

The resizable structures are shown in Figure 1. In the
front end, the instruction cache and branch predictor are
jointly resizable (i.e., each cache configuration is paired
with a branch predictor sized to operate at the frequency
of the cache). This permits applications with larger instruc-
tion footprints, or those that require more branch predic-
tion resources, to be accommodated, albeit at the cost of a
lower domain frequency. Similarly, in the load / store do-
main, the data cache and second level cache are resizable,
also as matched pairs. In the integer and floating-point do-
mains, issue queues can be resized to match available ILP.
Additional structures could also conceivably be resized; we
leave these options for future work.

There are costs associated with supporting adaptive
structures. With the smallest sizings, per-domain pipe stage
delays are balanced in order to attain the highest clock
rate. When the clock frequency is lowered to accommo-
date the additional delay of an upsized structure, the result-
ing stage delay imbalance results in a design that is over-

pipelined with respect to the particular frequency. The cost
is a longer branch mis-predict penalty. In our study, the
adaptive MCD incurs two additional integer cycles and one
additional front-end cycle for branch mispredictions. In ad-
dition, the base MCD configuration must have its structures
designed for maximum performance in order to achieve the
highest possible clock rate. But to support resizing, the
smallest structure size must be a substructure of the larger
sizings. Thus, structures may be suboptimal in their large
configurations relative to the same size structure that has
been optimized for a non-adaptable design.

2.1. Load / store domain

In the load / store domain, the L1 data and L2 caches are
8-way associative, and resized by ways [9]. The base con-
figuration (smallest size and highest clock rate) is a 32 KB
direct-mapped data cache and a 256 KB direct-mapped L2
cache. The two caches are upsized together by increasing
their associativity. The configurations we consider in our
experiments are shown in Table 1. To limit the state space

Table 1. L1 data and L2 cache configurations.

L1-D sub-banks L2 sub-banks
size assocadapt optimal size assocadapt optimal

32 KB 1 32 32 256 KB 1 8 8
64 KB 2 32 8 512 KB 2 8 4
128 KB 4 32 16 1 MB 4 8 4
256 KB 8 32 4 2 MB 8 8 4
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Figure 2. D-cache / L2 frequency versus configuration.

of possible configurations, we do not make use of the avail-
able 3, 5, 6, or 7-way associative configurations.

We use the CACTI modeling tool [33] (version 3.1) to
obtain timings for all plausible cache configurations at a
given size. Theoptimal columns in Table 1 describe the
configurations that provide the fastest cycle time for the
given capacity and associativity, without the ability to re-
size. Theadapt columns were chosen by adopting the
fastest configuration of the minimal-size structure and then
replicating this configuration at higher levels of associativ-
ity to obtain the larger configurations. This strategy ensures
the fastest clock frequency at the minimum configuration,
but may not produce the fastest configuration when struc-
tures are upsized. Since CACTI configures a 32KB direct-
mapped cache as 32 sub-banks, each additional way in the
adaptive L1-D cache is an identical 32 KB RAM. The re-
configurable L2, similarly, has 8 sub-banks per 256 KB
way. In contrast, the number of sub-banks in an optimal
fixed L1 varies with total capacity, and the optimal L2 struc-
ture has 4 sub-banks per way for all sizes larger than the
minimum.

Frequencies for the various cache configurations, opti-
mal and adaptive, are plotted in Figure 2. The difference
between the optimized and adaptive configurations is ap-
proximately 5%.

2.2. Front end domain

In the front end both the instruction cache and the branch
predictor are adaptive. Like the L1-D and L2 caches, they
are always resized together. The configurations we consider
are shown in Table 2. Like the data caches, the instruc-
tion cache adapts by ways, but with associativities of 1, 2,
3, and 4. The branch predictor is a hybrid design with a
global shared history (gshare) component, a local history
component, and a metapredictor to select which component
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Figure 3. I-Cache Frequency versus Configuration.

to use [20]. Thegsharecomponent is a global branch his-
tory table (BHT) of2hg two-bit counters indexed by the
hg-bit global history. The local history component is a pat-
tern history table (PHT) holding the histories for different
branches. The table is indexed by the branch PC. It returns
anhl-bit wide local history, which is used to index a local
BHT of 2hl two-bit counters.

For the conventional fully synchronous design, we ex-
plored a wide range of different instruction cache configu-
rations (Table 3), ranging in size from 4 to 64KB, and in
associativity from 1 to 4, to find the best option. Associated
with each instruction cache configuration is a branch pre-
dictor organization with a similar delay. Averaged across
our suite of 32 MediaBench, Olden, and SPEC2000 appli-
cations, a direct-mapped 64KB configuration and its asso-
ciated branch predictor provide the best performance.

Figure 3 compares the operating frequency of an opti-
mally configured direct-mapped cache to that of our adap-
tive configurations at various total cache sizes. As is
clear on the adaptive curve, there is a large difference in
frequency between direct-mapped and 2-way set associa-
tive configurations: approximately 31%. Since instruction
streams tend to need little associativity, the optimal large in-
struction cache is direct-mapped and aggressively clocked.
This is a clear advantage to the fully synchronous processor
that the adaptive design must overcome.

2.3. Integer and floating point domains

In both the integer and floating point domains, the issue
queues are resizable from 16 to 64 entries in four incre-
ments. The issue queue timings are derived as described
by Palacharlaet al. [23], using the same technology file
used by CACTI. Based on the results of Buyuktosunoglu
et al. [5], we assume that a resizable issue queue suffers no
access penalty over a non-resizable issue queue of the same
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Table 2. Adaptive instruction cache / branch predictor configurations.

I-cache, dynamic Branch predictor
Size AssocSub-banks hg gsharePHT Meta-predictor hl local BHT local PHT

16 KB 1 32 14 bits 16384 16384 11 bits 2048 1024
32 KB 2 32 15 bits 32768 32768 12 bits 4096 1024
48 KB 3 32 15 bits 32768 32768 12 bits 4096 1024
64 KB 4 32 16 bits 65536 65536 13 bits 8192 1024

Table 3. Optimized instruction cache / branch predictor configurations.

I-cache, optimized Branch predictor
Size AssocSub-banks hg gsharePHT Meta-predictor hl local BHT local PHT

4 KB 1 2 12 bits 4096 4096 10 bits 1024 512
8 KB 1 4 13 bits 8192 8192 10 bits 1024 1024
16 KB 1 16 14 bits 16384 16384 11 bits 2048 1024
32 KB 1 32 15 bits 32768 32768 12 bits 4096 1024
64 KB 1 32 16 bits 65536 65536 13 bits 8192 1024

4 KB 2 8 12 bits 4096 4096 10 bits 1024 512
8 KB 2 16 13 bits 8192 8192 10 bits 1024 1024
16 KB 2 32 14 bits 16384 16384 11 bits 2048 1024
32 KB 2 32 15 bits 32768 32768 12 bits 4096 1024
64 KB 2 32 16 bits 65536 65536 13 bits 8192 1024

12 KB 3 16 13 bits 8192 8192 10 bits 1024 1024
16 KB 4 16 14 bits 16384 16384 11 bits 2048 1024

24 KB 3 32 14 bits 16384 16384 11 bits 2048 1024
32 KB 4 2 15 bits 32768 32768 12 bits 4096 1024

48 KB 3 32 15 bits 32768 32768 12 bits 4096 1024
64 KB 4 16 16 bits 65536 65536 13 bits 8192 1024
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Figure 4. Issue queue frequency analysis.

size. A plot of queue frequencies is shown in Figure 4. Note
that due to thelog4 structure of the selection logic and the
fact that the selection delay is much larger than the wake-
up delay, we suffer a significant frequency decrease when
moving from an issue queue with 16 entries (which has 2
levels of logic) to any larger issue queue up to 64 entries
(all of which have 3 levels of logic). As will be explained
more fully in Section 5, this frequency effect causes a 16-
entry issue queue to be best for most applications.

3. Adaptive control algorithms

Both caches and issue queues require control algorithms
to support on-line adaptation to program phases. We de-
scribe our algorithms in this section. Note that they are not
used in the whole-program experiments: for those we pick
the configurations that show the best overall behavior based
on exhaustive (off-line) exploration of the state space.

3.1. Phase adaptive caches

For our reconfigurable caches we employ theAccounting
Cache[9] described in earlier work on energy efficiency.
As described in Section 2, this cache adapts by ways. Even
when running in a limited number of ways, however, it col-
lects statistics in the remaining ways, permitting the cal-
culation of the number of hits and misses that would have
occurred over a given span of time for any of the possible
configurations.

The four possible configurations of a 4-way set associa-
tive Accounting Cache are shown in Figure 5. In this exam-
ple, theA partition can be 1, 2, 3, or 4 ways. TheB partition
is the remaining portion. TheA partition is accessed first.
If the data block is found it is returned. Otherwise a second
access is made to theB partition, which causes blocks to
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Figure 5. Partitioning options for a 4-way Account-
ing Cache [9].

be swapped. Note that theB partition is not considered a
lower level of cache. All three caches of the adaptive MCD
machine (L1I, L1D, and combined L2) have their ownA
and B partitions. When we simulate a fully synchronous
processor, however, or when we choose a single adaptive
configuration for the entire program run, we use only theA
partitions: a miss inA skipsB and goes directly to the next
lower level of the memory hierarchy.

A cache with a smallA partition runs at a higher fre-
quency than one with a largerA partition. Ideally one would
make theA partition as small as possible without generating
a significant number ofB accesses. TheB partition access
latency is an integral number of cycles at the clock rate dic-
tated by the size of theA partition.

As described in detail in previous work [9], the Account-
ing Cache maintains full most-recently-used (MRU) state
on cache lines. Simple counts of the number of blocks ac-
cessed in each MRU state are sufficient to reconstruct the
precise number of hits and misses to theA andB partitions
for all possible cache configurations, regardless of the cur-
rent configuration. The control algorithm resets the counts
at the end of every 15K instruction interval, choosing a con-
figuration for the next interval that would have minimized
total access cost in the interval just ended. This interval
is comparable to the PLL lock-down time. Thus, during a
frequency change we always run with the simpler config-
uration: downsizing at the beginning of the change when
speeding up the clock, upsizing at the end of the change
when slowing down.

The hardware components required to perform this cal-
culation are given in Table 4. The delay calculations are
made with dedicated hardware—one for the instruction
cache and one for the L1 data and L2 cache pair—using
dedicated arithmetic circuits requiring an estimated 10k
equivalent gates [35] (5K for the instruction cache and 5K
for the L1 / L2 data caches). A complete reconfiguration
decision requires approximately 32 cycles, based on binary
addition trees and the generation of a single partial product
per cycle; multi-operand adders and encoded multiplication

would result in a faster calculation at the expense of addi-
tional circuitry.

3.2. Adaptive issue queues

A special property of the adaptiveAccounting Cachede-
sign is that it avoids exploration of the configuration space
when determining the best configuration. This property is
also desirable for issue queue control. We introduce a new,
deterministic algorithm to measure the inherent ILP of the
currently running application, independent of microarchi-
tectural features. The queue control algorithm uses this fig-
ure to choose among the four possible queue sizes the one
that maximizes effective ILP, normalized to frequency.

A key observation is that the amount of inherent paral-
lelism in the instruction stream can be calculated by im-
mediate dependences of output registers on input registers.
The earliest a result can be ready is the latest time of any of
its input operands plus the latency of the operation. For this
discussion let us assume that all ALU operations have a one
cycle latency. As instructions are fetched, their source reg-
isters are renamed via the register rename mapping table.
With tracking hardware initially reset, all input operands
for the first instruction will have timestamps of zero and
the destination register will receive a timestamp of ’1’. If
the next instruction uses that destination register as an in-
put then its own destination register will be updated with a
timestamp of ’2’, and so on. The maximum timestampM
is continuously recorded during this process.

Tracking continues untilN instructions have been
fetched, whereN represents the queue size of 16, 32, 48,
or 64. At that time an estimate of the application’s ILP is
N/MN . Of course, the division is not actually performed
because the numerator is a fixed quantity and the denomina-
tors can be compared directly in integer form. When all four
estimates have been computed, the control algorithm scales
them by the corresponding frequencies and compares them
to determine which queue size would have led, in the very
recent past, to the highest effective ILP.

The majority of the hardware required for this task is in
extra storage to hold the timestamps: four bits per register
to track the ILP for the 16 entry queue (ILP16), five bits for
ILP32, and six bits each forILP48 andILP64. The track-
ing intermingles integer and floating point operations, keep-
ing a count of each. A tracking interval ends when either
count,NINT or NFP , reachesN . This operation correctly
stifles consideration of larger queue sizes that can never be
filled for the less dominant instruction type because of re-
source limitations for the dominant instruction type. With
32 logical integer and 32 logical floating point registers, ILP
tracking requires an additional 256 bits forILP16 and 384
bits for ILP64. In our experiments we track the ILP for all
queue depths simultaneously, and consider the possibility
of resizing as soon as all four counts are available. Alter-
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Table 4. Estimate of hardware resources requirement to implement the Phase-Adaptive cache algorithm (per
adaptable cache / cache pair).

Component Estimate Equivalent Gates

24 MRU and Hit Counters (15-bit) 3n (Half-Adder) +4n (D Flip-Flop) =7n each 2,520
11 Adders (15-bit) 7n (Full-Adder) =7n each 1,155
2 8×28-bit Multipliers (36-bit Result) 1n (Multiplier) + 4n (D Flip–Flop) =5n each 360
1 Final Adder (36-bit) 7n (Full-adder) =7n each 252
Result Register (36-bit) 4n (D Flip–Flop) =4n each 144
Comparator (36-bit) 6n (Comparator) =6n each 216

Total 4,647
natively, one could use one set of hardware counters and
calculate the four ILP values serially by cycling through the
values ofN . Counters are reset at the end of each tracking
interval.

Functional unit resource limitations can also be easily
incorporated to guard against over-estimating potential ILP,
but we found this additional precision had little practical
impact on the algorithm’s performance. This resizing con-
trol algorithm avoids search and the problem of local min-
ima due to the (often) non-monotonic performance response
relative to queue size.

4. Methodology

The simulation environment is based on the Sim-
pleScalar toolset [4] with MCD processor extensions [29].
These extensions include modifications to model an aggres-
sive superscalar processor,e.g., the Register Update Unit
(RUU) has been split into separate reorder buffer (ROB),
issue queue, and physical register file structures. They also
include a heavy re-write of the time management code to
emulate separate clocks for each domain, complete with jit-
ter, and to account for synchronization delays on all cross-
domain communication. Table 5 contains a summary of the
simulation parameters. These have been chosen, in gen-
eral, to match the characteristics of the Alpha 21264. More
detail on the MCD extensions can be found in prior MCD
papers [18, 27, 28, 29].

Tables 6, 7 and 8 specify the benchmarks along with the
instruction windows, total number of instructions, and input
data sets or parameters for our simulation runs.

To make as fair a comparison as possible, rather than
pick a “typical” baseline fully synchronous processor, we
compare our approach against the fully synchronous pro-
cessor that provides the best overall performance for our
particular application suite. To find this “best overall” ma-
chine we explored a very wide design space: the cross-
product of 4 integer issue queue sizes, 4 floating-point issue
queue sizes, 4 data / L2 cache organizations, and 16 instruc-
tion cache / branch predictor organizations—a total of 1,024
options. (With 32 applications, this portion of our work
alone consumed 160 CPU months of simulation time.) The
sweep of i-cache configurations in particular ranged from

Table 5. Architectural parameters for simulated
processor.

Fetch queue: 16 entries
Branch mispredict penalty: 9 front-end + 7 integer cycles

(10 + 9 for adaptive MCD)
Decode, issue, and retire widths: 8, 6, and 11 instructions
L1 cache latency (I and D): 2/8, 2/5, 2/2, or 2/– cycles,

for A and (optionally) B partitions
L2 cache latency: 12/43, 12/27, 12/12, or 12/– cycles
Memory latency: 80 ns (1st access), 2 ns (subsequent)
Integer ALUs: 4 + 1 mult/div unit
FP ALUs: 4 + 1 mult/div/sqrt unit
Load/store queue: 64 entries
Physical register file: 96 integer, 96 FP
Reorder buffer: 256 entries

Table 6. MediaBench benchmark applications. All
use the reference data sets.
Benchmark Simulation window

adpcm encode (6.6M) & decode (5.5M)
epic encode (53M) & decode (6.7M)
jpeg compress (15.5M) &

decompress (4.6M)
g721 encode (0–200M) &decode (0–200M)

gsm encode (0–200M) &decode (0–74M)
ghostscript 0–200M

mesa mipmap (44.7M) & osdemo (7.6M) &
texgen (75.8M)

mpeg2 encode (0–171M) &decode (0–200M)

Table 7. Olden benchmark applications.

Benchmark Datasets Simulation window

bh 2048 1 0–200M
bisort 65000 0 Entire program (127M)

em3d 4000 10 70M–178M (108M)
health 4 1000 1 80M–127M (47M)

mst 1024 1 70M–170M (100M)
perimeter 12 1 0–200M

power 1 1 0–200M
treeadd 20 1 Entire program (189M)

tsp 100000 1 0–200M

4KB to 64KB and 1, 2, 3, and 4-way associativity, including
many (higher frequency) options not available in the adap-
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Table 8. Spec2000 Benchmark applications.

Benchmark Datasets Simulation window

Integer
bzip2 source 58 1000M–1100M

crafty ref 1000M–1100M
eon ref 1000M–1100M
gcc 166.i 2000M–2100M

gzip source 60 1000M–1100M
parser ref 1000M–1100M

twolf ref 1000M–1100M
vortex ref 1000M–1100M

vpr ref 1000M–1100M
Floating-Point

apsi ref 1000M–1100M
art ref 300M–400M

equake ref 1000M–1100M
galgel ref 1000M–1100M

mesa ref 1000M–1100M
wupwise ref 1000M–1100M

Table 9. Distribution of adaptive architecture
choices for Program-Adaptive.

Integer IQ FP IQ D-Cache I-Cache

16 85% 16 73% 32k1W/256k1W 50% 16k1W 55%
32 5% 32 15% 64k2W/512k2W 18% 32k2W 18%
48 5% 48 8% 128k4W/1024k4W 23% 48k3W 8%
64 5% 64 5% 256k8W/2048k8W 10% 64k4W 20%

tive MCD architecture. The overall best fully synchronous
configuration for this suite of benchmarks has a 16-entry
integer issue queue, a 16-entry floating-point issue queue,
a 64KB direct-mapped instruction cache with its associated
branch predictor (Table 3), and a 32KB direct-mapped L1
data cache / 256KB direct-mapped L2 cache. The 64 KB
direct-mapped instruction cache is 27% faster than the same
capacity cache in the adaptive MCD design, and the mispre-
diction penalty is substantially lower. The data cache is the
smallest and fastest configuration.

5. Results

Figure 6 shows the relative improvement in run time
of the Program-Adaptive and Phase-Adaptive MCD pro-
cessors over the best-overall fully synchronous proces-
sor. Program-Adaptive configurations are chosen by per-
application exhaustive testing across all possible adap-
tive MCD configurations. Phase-Adaptive results employ
the control algorithms described in Section 3. Many ap-
plications achieve a significant performance improvement
with the adaptive MCD processor: forgcc the Program-
Adaptive and Phase-Adaptive processors outperform the
fully synchronous processor by 42% and 45%, respectively.
Forem3d the corresponding numbers are 45% and 49%.

Table 9 summarizes the distribution across the complete
suite of benchmarks of the best MCD configurations for the
Program-Adaptive mode (no dynamic phase adjustments).
From these results it is clear that many applications perform
best with the smallest / fastest domain configurations (first
line of the table). At the same time, there are applications
that benefit from larger / slower configurations. Often one
structure dominates performance.Gsm encode andde-
code , for example, have similar performance for all con-
figurations with a 64KB 4-Way instruction cache. While
the very best results are achieved in conjunction with the
smallest / fastest integer and load / store structures, the dif-
ferences are minor.Ghostscript , similarly, performs
well whenever the instruction cache is larger than 32KB;
additional increases yield only marginal improvements.

The bias in Table 9 toward the smallest configuration is
due to a number of applications having small computation
kernels, high instruction level parallelism, and small data
sets; e.g., adpcm encode , adpcm decode , bzip2 ,
and mpeg2 encode . For these applications the small-
est configuration supplies sufficient capacity for efficient
processing; thus, they opt for this configuration due to
its higher clock frequency. On the other hand, memory
intensive applications such asem3d perform best with
larger / slower structures that significantly reduce the num-
ber of cache misses and avoid the associated long latencies.

There are also applications for which Program-Adaptive
MCD performs worse than the fully synchronous pro-
cessor (jpeg decompress 2.7%,gsm encode 0.1%,
ghostscript 1.8%,mesa mipmap 4.9%,apsi 1.9%,
bzip2 4.8% andvpr 6.6%). The most common source
of trouble is an inability to deliver instructions to the exe-
cution units fast enough. This in turn stems from the in-
ability to upsize the I-cache without increasing its associa-
tivity, which exacts a significant cost in clock rate. For
applications that need the larger capacity (but not the in-
creased associativity) there is no way to gain back the per-
formance lost due to the decrease in frequency. For all other
applications, the Program-Adaptive MCD improves perfor-
mance relative to the fully synchronous processor, and in
many cases it is a significant improvement (adpcm de-
code 30.5%,em3d 48.7%,mst 43.3%,art 32.2%,gcc
41.4% andvortex 33.1%). Overall, a 17.6% performance
improvement is achieved.

5.1. Program- vs Phase-Adaptive

In general, Phase-Adaptive outperforms Program-
Adaptive. There are no applications in our suite for which
the performance of the Phase-Adaptive MCD is lower than
that of the fully synchronous processor, and the overall
performance improvement increases to 20.4%. In sev-
eral applications the improvement is significant:apsi ,
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Figure 6. Performance improvement of Program- and Phase-adaptive MCD over fully synchronous.

epic encode , ghostscript , crafty , eon , mesa,
parser , twolf , andvortex .

In Figure 7 we plot samples of adaptive behavior to high-
light the significance of phases. The plots show structure
configuration over time, as measured by the number of com-
mitted instructions. In Figure 7(a),apsi shows strong pe-
riodic phases for its data cache capacity needs. The data / L2
caches adjust predominately between 32 KB/256 KB 1-way
and 128 KB/1 MB 4-way. In Figure7(b), the issue queue for
art cycles through the four configuration sizes in a regular
pattern corresponding to available ILP.

All instruction cache configurations prove useful for
improving performance in the Program-Adaptive results:
nearly half (45%) of the applications employ an instruc-
tion cache other than the smallest. Remarkably, however,
in the Phase-Adaptive case only the smallest instruction
cache configuration is used, yet the overall performance
is better than that of Program-Adaptive. This seeming
contradiction results from the fact that adapting at phase
changes improves throughput enough to cause the proces-
sor to speculate through more branches. This in turn re-
sults in a larger number of mispredictions (though not nec-
essarily a higher mispredictionrate) and more overhead due

to pipeline flushes. A smaller, faster instruction cache re-
duces refill overhead by responding faster, thereby increas-
ing overall performance.

Faster pipeline refill is also why the best instruction
cache for the fully synchronous processor is one that is
both fast and large, at 64 KB direct-mapped. The frequency
degradation in the adaptive MCD design to go to a larger in-
struction cache which is set-associative outweighs the per-
formance benefits for these applications. This suggests, as
a topic for future work, that an adaptive instruction cache
design that resizes by sets rather than ways [25] might be
able to gain additional performance benefits.

There are a few notable cases where Phase-Adaptive
does not perform as well as Program-Adaptive. One such
application isadpcm decode . The cause is the code ker-
nel in theadpcm decoder() function, which contains a
series of data-dependent branches that are difficult to pre-
dict:

vpdiff = step >> 3;
if ( delta & 4 ) vpdiff += step;
if ( delta & 2 ) vpdiff += step>>1;
if ( delta & 1 ) vpdiff += step>>2;
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Figure 7. Sample reconfiguration traces

The dynamic cache controller speeds up processing by con-
figuring the data caches to their minimal and fastest siz-
ing. The configuration is the proper configuration relative
to the cache domain behavior. This results in a high rate
of processing and causes more branches to be speculated,
often incorrectly. By running with a larger cache the best
synchronous design processes instructions more slowly and
suffers fewer mispredictions, resulting in a dramatic de-
crease in pipeline flushes and significantly better perfor-
mance. This advantage over the Phase-Adaptive case would
disappear if the problematic branches were replaced with
predicated instructions.

Phase-Adaptive mode is less effective with the applica-
tion mstbecause of periodic short bursts of cache conflicts

in the A partition. The cache controller responds by in-
creasing the associativity from direct-mapped to 2-way in
order to avoid the costlyB partition accesses. However, the
change occurs in the next interval, after the burst, and the
cache configuration ends up flipping back to direct-mapped.
This pattern repeats, resulting in a slowdown compared to
Program-Adaptive mode.

In summary, the adaptive MCD approach is able to
exploit the needs of individual applications better than a
globally constrained, fully synchronous processor. The
Program-Adaptive MCD processor achieves a performance
improvement of 17.6% over the best performing fully syn-
chronous processor. Allowing the MCD processor to
adapt to application phases further improves performance to
20.4% over the fully synchronous processor and, more sig-
nificantly, Phase-Adaptive achieves this improvement with-
out the application profiling of Program-Adaptive mode.

6. Related Work

Several manufacturers, notably Intel [17] and Trans-
meta [12], have processors capable of global frequency and
voltage scaling. Global control works well for saving en-
ergy in applications with real-time constraints for which
the processor as a whole is over-designed [14, 19]. The
goal is to save energy with minimum performanceloss. Al-
bonesi [1] proposes acomplexity adaptive processorthat
adjusts structure capacity while varying global clock fre-
quency and/or access latencies (cycles) for performance op-
timization.

Childers et al. [6] propose trading IPC for clock fre-
quency to save energy. The underlying assumption is that
lowering the clock frequency will degrade performance.
The user is allowed to select the level of performance degra-
dation to be tolerated. This assumption is correct with a
global clock, but in a GALS architecture with decoupled
clock domains, decreasing the frequency can give higher
performance if resources are scaled up accordingly. Multi-
ple clock domain architectures [3, 15, 29] extend the work
of Childerset al. by permitting the frequency of each do-
main to be set independently of the others. Semeraro
et al. [27] adjust frequencies automatically at run time to
reduce energy in domains that are not on the critical path of
the instruction stream.

Powell et al. [25] incorporate a variable latency data
cache. By predicting which way in a set associative cache
holds the requested data, an access can be as fast as in a
direct-mapped cache. A miss in the predicted set requires an
additional access. The NUCA approach [16] similarly ex-
ploits the non-uniform access nature of large L2 caches, and
migrates critical cache blocks closer to the processor. Bala-
subramonianet al. [2] describe a reconfigurable data cache
hierarchy whose access time adjusts with the configuration,
and which also swaps blocks to faster subarrays as needed.
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They assume a globally synchronous processor. We extend
this prior work by decoupling the clock domains and ad-
justing the data cache hierarchy, instruction cache, branch
predictor, and integer and floating-point issue queues.

Reconfigurable issue queues [5, 9, 11, 24] have also been
used to reduce energy. Results indicate that applications
vary greatly in their resource requirements. The work of
Dropshoet al. [9] includes the instruction, data, and L2
caches; issue queues; ROB; and register files. While the fo-
cus is energy efficiency, the results demonstrate that appli-
cation resource requirements vary across these structures.
Detailed timing of issue queues as it relates to queue size
is explored by Buyuktosunogluet al. [5] and Palacharla
et al. [23].

Sasankaet al. [26] explore the combination of hard-
ware adaptation (of issue queue size and issue width) and
global-chip dynamic voltage scaling for multimedia appli-
cations. The goal is to meet frame rate processing re-
quirements while minimizing energy dissipation. Our ap-
proach, by contrast, improves performance through adapta-
tion and fine-grain dynamic frequency scaling. We argue
that to achieve appreciable speedups, fine-grain dynamic
frequency scaling using a GALS approach is necessary to
limit the frequency effect of upsizing a structure to the lo-
cal unit level. As demonstrated by Albonesi [1], dynam-
ically trading frequency for complexity in a conventional,
single clock design benefits only those applications with
a severe performance bottleneck. This paper demonstrates
how the adaptive MCD microarchitecture yields significant
speedups across a broad range of applications.

7. Conclusions

General-purpose processors are designed to work well
across a wide range of applications. The design point ar-
rived at is, by necessity, a compromise since applications
exercise the microarchitecture resources in widely varying
degrees. Theadaptive MCD architecturepresented in this
paper offers designers additional dimensions in which the
microarchitecture can be optimized to further improve per-
formance. By separating the major functionality into sep-
arate clock domains, clock rate and complexity tradeoffs
can be made independently in each domain. By making
the dominant structures in each domain adaptive, the same
tradeoffs can be made dynamically for each application or
application phase. Performance is enhanced by reducing
each application phase’s particular hardware bottlenecks,
whether they are limited by frequency or by hardware re-
sources.

We demonstrate that an adaptive MCD architecture pro-
vides performance improvements over any fixed combina-
tion of configurations in a fully synchronous design. For
our suite of 32 standard benchmarks, the improvement is
17.6% over the best overall fully synchronous processor

when adapting once for each application and 20.4% when
adaptation is performed at application phases, despite the
branch delay and frequency penalties inherent in adaptabil-
ity. In future work we plan to explore a wider range of
adaptive structures, examine the effects of branch predictor
resizing in more detail, and consider resizing the instruction
cache by sets instead of (or in addition to) ways.
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