
Control Flow Optimization Via Dynamic Reconvergence Prediction

Jamison D. Collins
���

, Dean M. Tullsen
�
, Hong Wang

�

�
Department of Computer Science and Engineering

�
Microarchitecture Research Labs

University of California, San Diego Intel Corporation
La Jolla, CA 92093-0114 Santa Clara, CA 95052

Abstract
This paper presents a novel microarchitecture technique

for accurately predicting control flow reconvergence dynam-
ically. A reconvergence point is the earliest dynamic instruc-
tion in the program where we can expect program paths to
reconverge regardless of the outcome or target of the cur-
rent branch. Thus, even if the immediate control flow after a
branch is uncertain, execution following the reconvergence
point is certain. This paper proposes a novel hardware re-
convergence predictor which is both implementable and ac-
curate, with a 4KB predictor achieving more than 95% ac-
curacy for SPEC INT, and larger implementations achieving
greater than 99% accuracy.

The information provided from reconvergence predic-
tion can increase the effectiveness of a range of previously
proposed performance optimizations, including speculative
multithreading, control independence, and squash reuse.
This paper also demonstrates a new technique that takes ad-
vantage of the dynamic reconvergence prediction informa-
tion in order to predict a wrong path excursion ahead of
branch resolution. On average, 34% of wrong path fetches
are eliminated.

1. Introduction

Control flow instructions are those instructions in a pro-
gram for which execution does not necessarily follow im-
mediately to the next sequential instruction. Because of
the increasing latency between the fetch of a branch and
its computation, instructions following an unresolved branch
are fetched, and often executed, speculatively, meaning they
may or may not represent useful work. However, all con-
trol flow instructions have a control reconvergence point,
a place in the program where all paths converge. Exe-
cution following this point is certain, and (depending on
the architecture) instructions may be fetched, and possibly
executed, non-speculatively. For example, the instruction
statically following a call usually marks a reconvergence
point for all the dynamic instructions within the function
call. There have been many different proposals which rely
on executing instructions expected to be independent of a
hard to predict control instruction: speculative multithread-
ing [18, 10, 19, 9], Dynamic Multithreading [3] (DMT), mul-
tipath execution [22, 8], and others.

Despite the plethora of techniques relying on the identifi-
cation of control independent instructions, there has been no
comprehensive study of techniques for dynamically identi-
fying control reconvergence points with high accuracy. Con-

trol reconvergence is a concept similar to post-dominators
computed by the compiler for certain optimizations. In
fact, post-dominators can be identified offline by the com-
piler, and used to indicate conservative control reconver-
gence points [11], but that approach has a number of limi-
tations. Such reconvergence points lack information on the
dynamic behavior of the program, and will necessarily ac-
commodate rarely or never taken control paths. Addition-
ally, communicating the reconvergence information to the
processor core requires non-trivial changes to the underly-
ing instruction set architecture.

A second approach to identifying reconvergence points
have been hardware-based approaches which use simple
heuristics geared at specific program constructs. For ex-
ample, in [3], the reconvergence points for loops can often
(but not always) be identified by assuming that control re-
converges at the instruction following the backwards branch
which terminates the loop. Other proposed heuristics are
geared at simple if-then, or if-then-else constructs
in a program [5]. Though these schemes can be accurate for
a subset of branches, they still fail to identify reconvergence
points for a large number of control instructions when pro-
gram behavior does not follow the expected pattern.

In this paper, we propose a new dynamic reconvergence
prediction technique which requires no compiler support, but
still achieves extremely high reconvergence prediction accu-
racy (� 99% accuracy on average for SPEC INT). Unlike
previously proposed heuristic-based approaches, our tech-
nique remains robust in the face of aggressive compiler op-
timizations. In fact, we show that a different compiler and
different ISA make no difference in the accuracy of our tech-
niques.

We find that branches can be classified into one of four
categories, based on a summary of the control flow observed
following the branch on previous executions. For example,
the dominant such category is rec below max, which indi-
cates that, after executing the targeted branch, no instruction
“below” (at a greater instruction address than) the reconver-
gence point executes prior to the reconvergence point. Note
that this technique also provides fast identification of recon-
vergence mispredictions, which for this category is identified
by the commit of an instruction “below” the predicted recon-
vergence PC. Prior techniques typically lacked this capabil-
ity. For many dynamic control flow optimizations, this is a
useful property; for example, with speculative multithread-
ing it allows early release of execution resources.

Our technique adds hardware to the processor’s back-end,
which profiles the instructions committed by a program to

1

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

identify a candidate reconvergence point for each of the four
categories for a targeted branch. Additional information is
collected which allows accurate prediction of the reconver-
gence point by selecting among these four possibilities. We
present data illustrating that this structure can be built both
small and fast, making a physical implementation feasible.

This is the first study of the general problem of dynamic
reconvergence prediction. Further, the novel technique we
propose is the only technique to achieve accuracy compa-
rable to a static compiler mechanism. At the same time,
it exceeds the compiler-generated reconvergence points by
identifying earlier points without loss of accuracy.

To demonstrate the effectiveness of the novel reconver-
gence predictor, we first illustrate how this predictor can be
applied to previous techniques by achieving additional per-
formance improvement on a processor implementing the Dy-
namic Multithreading (DMT) architecture. We also show
that a compiler-driven control independence execution opti-
mization (squash reuse [11]) can be performed in a compiler
independent way without sacrificing any effectiveness.

Second, we demonstrate how the knowledge of control
reconvergence points and the analysis performed to deter-
mine them conveys to the hardware qualitatively new infor-
mation about program behavior, thus enabling more effective
novel optimizations. In this paper we describe how our re-
convergence predictor can be used to create a wrong path
predictor that can identify speculative excursions onto the
wrong control flow path before the mispredicted control in-
struction is executed. Through a simple modification of our
control reconvergence predictor, an initial implementation of
this predictor identifies on average more than 40% of ex-
cursions onto the wrong control path, allowing more than
34% of wrong path fetches to be eliminated for the studied
benchmarks. This has application for power efficiency, mul-
tithreaded fetch policies, and accelerated branch correction.

The rest of this paper is organized as follows. Section 2
discusses relevant prior research. Section 3 describes our
simulation and evaluation framework. Section 4 describes
control reconvergence, and presents existing approaches to
identify reconvergence points, and Section 5 presents our
proposal for a new reconvergence predictor. We evaluate this
predictor by applying it to a variety of potential applications
in Section 6. Section 7 concludes.

2. Related Work

The research area of control speculation and control re-
convergence has received considerable attention.

A number of techniques provide some form of control
misspeculation tolerance. Multithreading [4, 21] is a tech-
nique allowing multiple programs to execute simultaneously
on a single processor core, allowing threads to continue to
make progress overlapped with one thread’s misspeculation.
Dynamic Multithreading (DMT) [3], at runtime, splits a sin-
gle program into multiple execution streams at loop and
function call boundaries. It is one example of Speculative
Multithreading [18, 10, 19], a class of techniques to overlap
the execution of predicted future control paths with current
execution. Much of the work in this area relies on com-
piler analysis to identify future spawn points. Others tend
to rely on simple strategies to identify likely reconvergence,

like loop and procedure call continuations. Although many
of these techniques rely on the compiler to identify future
reconvergence, not all are constrained to be conservative.
For example, [9] introduces the concept of a control quasi-
independent point, which they define as a future instruction
95% likely to be on a future control-flow path. Other recent
works have proposed the use of control quasi-independent
points for instruction prefetching [1, 2].

Falcón et al. present Prophet/Critic Hybrid Branch Pre-
diction [7]. This technique utilizes a traditional branch pre-
dictor to generate a sequence of future branch predictions,
which are then interpreted to evaluate the accuracy of the
current branch prediction. This approach has some similar-
ities to the wrong path predictor we describe in this paper,
though it targets a subset of the main thread hints targeted by
our predictor.

Prior research has also attempted to mitigate control mis-
speculation by following multiple possible control paths [22,
8]. Skipper [5] is a technique for deferring the fetch of in-
structions likely to be on the wrong path, and instead fetch-
ing and executing instructions from a predicted independent
instruction region.

Finally, techniques have been proposed to salvage some
of the work performed on the incorrect control path via
squash reuse [17], Control Independence [11, 12, 6], and
Register Integration [13].

Both Skipper and DMT propose simple, heuristic-based
dynamic reconvergence predictors which were used to en-
able their particular optimizations.

The research presented in this paper represents the first
general, comprehensive study of dynamic reconvergence
prediction. The mechanism we propose can be used to in-
crease the effectiveness of many of the above techniques,
or in other cases to remove the dependence on the compiler
and/or ISA modification.

3. Simulation Methodology

This paper utilizes the SPEC CPU 2000 integer bench-
marks as its target benchmark suite. This set of programs ex-
hibits a wide range of control behaviors, including programs
with a good mix of conditional branches, indirect calls and
indirect jumps, both in terms of quantity as well as prediction
rates.

For all simulations in this study, benchmarks are sim-
ulated 100M total instructions, with fast-forward distances
determined by the SimPoint tool [16]. Simulation regions
identified by this tool have been found to be highly repre-
sentative of full program execution. Programs execute using
reference inputs. The binaries simulated are SPEC peak bi-
naries compiled for the Alpha 21264 by the DEC/Compaq cc
compiler, provided by Chris Weaver from Michigan. These
peak binaries have been very aggressively optimized, includ-
ing aggressive predication.

Performance results given in Section 6 are derived us-
ing the SMTSIM [20] simulator. SMTSIM is an execution
driven, cycle accurate processor simulator which models an
SMT processor. We model an 8 instruction wide, 8 stage
pipeline with 384 integer and 384 FP renaming registers (in
addition to 32 of each for each thread context), a 384 en-
try re-order buffer, and 128 entry integer and FP instruction

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

�������������
	�

�������������

��������

�������������
	��

� � � � � ��� �

� ��!#"
	�$

�������������
�������������

	�%

� � � � � ��&

��'�()�*

��+�, (

-/.

-/0

-21

-/3

�������������

45��� 6 7

�������������

�������������
��8

-:9

Figure 1. Control flow graph with branches B1-B5
and reconvergence points R1-R5.

queues. A 3 level memory hierarchy is modeled: 32KB 2-
way I and D caches, a 512KB 4-way shared L2 cache, and a
4096 KB 8-way L3 cache. Round trip latency to the L2 cache
is 10 cycles, to the L3 cache is 20 cycles, and to memory is
150 cycles. Unless otherwise specified, the branch predictor
modeled is based on the EV8 branch predictor [15], but we
do not model the EV8’s banked design. To compensate for
this, we model an instantaneous GHR update, and assume
private hysteresis for all table entries. Total capacity of the
branch predictor is 88 kbits. A 256 entry, 4-way BTB is
modeled.

The results in this paper are insensitive to most of these
simulation parameters, with the significant exception of the
branch predictor, for which we have tried to model an ag-
gressive implementation.

4. Reconvergence

This section describes control reconvergence in more de-
tail. It also describes existing approaches that attempt to
identify some kind of control reconvergence for use in some
particular control flow optimization.

The control reconvergence point for a particular instruc-
tion is defined as a future dynamic instruction such that, re-
gardless of the outcome of any non-exceptional intervening
control flow, execution will eventually reach the specified
PC.

We start out by providing examples of control reconver-
gence to give insight into why identifying reconvergence
points at runtime on a compiled binary might be difficult, and
some of the regularities in program behavior we rely upon to
identify these points accurately. Figure 1 illustrates a sample
control flow graph with some complex, but common, recon-
vergence behavior. Branches are indicated by the labels B1-

0%

20%

40%

60%

80%

100%

bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

P
er

ce
n

ta
g

e
D

yn
am

ic
 C

o
n

tr
o

l I
n

st
ru

ct
io

n
s

ind jump ind call forward cbr one forward cbr both backward cbr one backward cbr both

Figure 2. Breakdown of dynamically executed
control instructions for the studied benchmarks.

B5 and reconvergence points indicated by R1-R5. Assume
basic blocks are laid out physically in the binary in the same
vertical order in which they appear in the figure.

Branch B1 represents an example of a control construct
which transferred to the binary intact; it follows the proto-
typical if-then construct form, in which a forward con-
ditional branch leads to a rejoin point for control, regardless
of whether that branch is taken or not. For such constructs,
identifying reconvergence points can be achieved through
simple pattern matching of the executed instructions.

It is important to note that in compiling and aggressively
optimizing a program, the final assembly representation of-
ten differs significantly from the high level program code.
Thus, conventional control flow constructions do not always
translate to conventional control flow. For example, because
the if-then-else branch at B3 encapsulates a break
statement, applying simple pattern matching to it would fail
to identify its reconvergence point. Branch B4 (a case con-
struct) has been targeted by code layout optimizations which
pack instructions along the “hot path” close together. When
a “cold path” is executed, control leads to below the recon-
vergence point, which then branches back up to the recon-
vergence point.

Because programs are typically structured as a top-to-
bottom flow of program constructs, we typically see recon-
vergence points appearing below the branch they correspond
to. However, this need not be the case. For example, the sim-
ple if-then construct for branch B5 has its reconvergence
point above the branch itself. For branch B2 the reconver-
gence point is given by whichever (static) instruction follows
the most recent (dynamic) call instruction which invoked
this function instance, as multiple function returns are reach-
able prior to any reconvergence point. While the structure of
a compiled and optimized program might not exhibit the reg-
ularities of a high-level view, the next section demonstrates
that some general regularities do exist at the binary level.

4.1. Survey of Program Behavior

This section presents a brief survey of the benchmarks
studied in this work, and the reconvergence behavior they
exhibit. Control reconvergence points are identified offline in

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

benchmark bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

rec below branch 74 492 69 61 1322 83 71 104 131 89 155 32
rec below max 59 487 68 61 1242 79 61 103 128 87 150 31

rec above branch 0 0 0 0 30 1 2 0 4 4 9 0
rec above max 0 0 0 0 30 1 1 0 4 4 8 0

rebound rec 15 5 1 0 80 4 10 1 3 2 5 1
return rec 0 52 11 7 69 8 10 3 20 27 14 0

forward cbranch one outcome 46 288 100 192 2296 139 115 38 610 79 1033 22
backward cbranch one outcome 6 52 2 11 121 12 12 1 25 19 38 2

Table 1. Information on where static reconvergence points are located relative to the branch instructions to which
they correspond, for each static branch in the program.

this section, for the purpose of better understanding existing
and proposed techniques.

We derive a branch’s static reconvergence point using the
following methodology. Because we are working with pre-
compiled binaries, we generate a control flow graph from
the binary. To include indirect jumps, we profile the code to
track all taken targets of all indirect jumps, and add them to
the control flow graph. This gives us a very close approxi-
mation of the control flow graph the compiler would see. We
then use this data to calculate the static reconvergence point
for each branch.

The static reconvergence point is guaranteed to be ac-
curate, regardless of actually observed control flow, but
is also restricted to obeying infrequently (or never e.g.
if(error)) executed control paths. In the vast majority
of cases, this is the immediate post-dominator of the basic
block containing the control instruction.

Figure 2 gives a breakdown of dynamic control in-
struction instances in the analyzed programs. Conditional
branches make up the majority of program control instruc-
tions, either exercising a single outcome (cbr one) or both
outcomes (cbr both) during execution. However, all pro-
grams execute a significantly larger number of forward
branches than backward branches.

Indirect jumps (such as found in case constructs) only
make up a large fraction of control instructions in crafty,
gcc, and perl. However, target prediction for indirect
jumps is typically less accurate than conditional branch pre-
diction, and may contribute a significant fraction of total con-
trol misspeculations. This heightens the importance of iden-
tifying reconvergence points for these instructions if it pro-
vides additional opportunity for techniques which mitigate
misprediction costs [11, 12, 6, 5].

Eon, gap and perl contain a significant number of in-
direct calls. However, for indirect calls the reconvergence
point is easily predicted conservatively as the sequential in-
struction following the call instruction.

Table 1 shows a breakdown of where the static scheme
identifies reconvergence points for the conditional branches
and indirect jumps in the studied benchmarks. Quantities are
listed in terms of the number of static branches. In the re-
mainder of the paper, “below” refers to an instruction with a
higher PC than the reference point, and “above” refers to in-
structions with a lower PC. Figure 3 shows example control
flow graphs for the dominant reconvergence categories.

In this table, rec below branch refers to the number of
static branches for which the reconvergence point appears
below the branch instruction. The category rec below max
indicates the subset of these branches for which no instruc-

��� �������

	�

��� �������

	�

��� �������

	�

� ����������� ��
� �� ���������

� � �� ���!
� ����������� ��

� ��"�������� ��
� � ����������

Figure 3. Example control flow graphs for the
three dominant reconvergence categories.

tion below the reconvergence point can appear (at the same
call level) between the execution of the control instruction
and the execution of the reconvergence point. This is the
dominant branch behavior, and is exhibited for 93% of static
branches. Branches B1 and B3 from Figure 1 illustrate this
behavior.

Intuitively such control behavior makes sense, as it aligns
with how many high level programming languages are struc-
tured — as a series of program constructs flowing “down-
ward” to the next construct. In fact, this simple observa-
tion is sufficient to construct a highly accurate reconvergence
predictor, as we will highlight in the next section. Though
not stated explicitly, the heuristics used in both Skipper and
DMT also rely on this assumption, in different ways.

Rec above branch refers to those branches and indirect
jumps with their reconvergence point above the targeted
branch. Rec above max is analogous to rec below max —
no instruction below the reconvergence point (but above the
branch) can execute between the branch instruction and its
reconvergence PC. Note that while a significantly smaller
number of branches have reconvergence points above the tar-
geted branch, those that do are typically in the rec above max
category. BranchB5 in Figure 1 illustrates an example of this
behavior.

Because some benchmarks contain a significant number
of branches in the rec below category but not in the rec be-
low max category, we assign them the special designation of
rebound rec, of which B4 in Figure 1 is an example. For
such branches, some control flows (though not necessarily
all) initially branch over the reconvergence point, and then
later branch backwards to the reconvergence point. Some
control paths might still lead directly from the branch to the
reconvergence point (without first branching over it). We

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

found such branches to appear commonly in instantiations
of case constructs.

The final category of reconvergence points we consider
is return rec, which are branches for which control can lead
from the branch to multiple return instructions without first
reaching a common reconvergence point. Branch B2 in Fig-
ure 1 illustrates this behavior. For example, crafty con-
tains a large dynamic number of such branches due to the
frequent calls to FirstOne() and LastOne(), each of
which identify the first or last byte in a word which has a bit
set. Both of these functions contain five return instruc-
tions.

Finally, we note that all programs contain a significant
number of static branches which only exhibit a single out-
come (forward cbranch one outcome, and backward cbranch
one outcome). Those are forward or backward branches, re-
spectively, that are either always taken or always not taken.
Such branches are omitted from the other categories in this
table, and from all results depicting reconvergence prediction
accuracy. Such branches don’t truly “reconverge” as they
never “diverge” in the first place, limiting their applicabil-
ity to reconvergence-based optimizations, and the reconver-
gence point for these branches can be trivially predicted.

4.2. Existing Reconvergence Schemes

Briefly, we compare prior approaches to identifying con-
trol reconvergence points. The three previously proposed
techniques we examine are:

Compiler Reconvergence Generation Some past re-
search has relied on the compiler to identify and associate an
appropriate reconvergence point with each control instruc-
tion [11, 12] by choosing the immediate post-dominator as
the reconvergence point for a basic block involving a control
instruction.

A basic block B is defined as a post-dominator for another
block A if all simple paths from A to basic block C (where
C is any basic block) pass through B. Therefore, when A is
executed, we are guaranteed to reach B. The immediate post-
dominator executes prior to all other post-dominators. This
approach is roughly equivalent to the static control reconver-
gence scheme described above.

Dynamic Multithreading (DMT) [3] Dynamic Multi-
threading is a technique for dynamically breaking program
execution at loop and function call boundaries. When a
backwards branch (all of which are assumed to terminate
loops) or function call is encountered, a speculative thread
is spawned to execute the code following the conditional
branch or past the function call. We extend this prediction
scheme to implicitly predict the reconvergence points of all
branches contained within the loop or within the function
call. This technique predicts most reconvergence points ac-
curately, but much more conservatively than even the static
scheme, as we demonstrate in Section 5.4. The original form
of this scheme presented in [3] does not predict reconver-
gence points for forward conditional branches.

Skipper [5] Skipper uses reconvergence prediction to
identify instructions independent of a recently encountered
unpredictable branch. Those instructions are speculatively
executed while awaiting resolution of the branch. This tech-
nique predicts reconvergence points targeting three program

constructs. When a forward conditional branch is encoun-
tered, it is assumed that either an if-then, or if-then-
else construct has been encountered. They assume that
all such constructs consist of a specific form. Backward
branches are assumed to indicate a loop, and the sequentially
next instruction (following the backward branch) is chosen
as the reconvergence point, as is done in DMT.

Neither the DMT or Skipper heuristic target indirect jump
instructions. As stated previously, the reconvergence for in-
direct calls is easy to predict, and not included in reconver-
gence prediction measurements for any scheme, for fairness.

5. Building a Better Reconvergence Predictor

This section presents our scheme for dynamically learn-
ing and predicting the reconvergence PC for conditional
branches and indirect jumps. Our reconvergence prediction
scheme does not rely on heuristics geared towards specific
control flow constructs, nor does it require compiler sup-
port. Instead, it is a general scheme based on constructing
a concise summary of the expected control flow between
the executed branch and its reconvergence PC. Because this
scheme predicts based on path information (rather than sim-
ply predicting a reconvergence PC), it trains quickly and ac-
curately by identifying not only that a prediction was wrong,
but exactly where the instruction stream diverged from the
expected path.

5.1. Reconvergence Predictor Hardware

To identify and predict the reconvergence points of
branches, we add a back-end structure, the Reconvergence
Prediction Table (RPT). This table is composed of individual
RPT entries, each of which holds information on the recon-
vergence behavior for a single static branch.

An RPT entry is trained in multiple training phases. Un-
til the branch is executed and committed, its corresponding
RPT entry is inactive. After the branch is committed, it en-
ters an active checking/training phase. An RPT entry is only
updated in response to instructions committed at the same
call level as the branch instruction which activated it. There-
fore, at times when the main thread executes at a greater call
level than the training branch, the RPT entry is temporarily
inactivated (but another instance of the same branch may in
fact be active and training the RPT entry). When control re-
turns to the same call level as the training branch, the entry is
again activated. When the function containing an active RPT
entry returns, that entry is inactivated.

A simple (or idealized) reconvergence predictor can be
implemented by broadcasting committed PC addresses to all
entries (training only those entries which are currently ac-
tive) of a potentially large table, by enabling each RPT entry
to directly track the call levels at which it is currently ac-
tive. Because this is the first proposal of this kind, we seek
to understand the limits of this reconvergence prediction ap-
proach. Thus, we initially assume this type of implementa-
tion. The impact of more realistic assumptions is explored in
Section 5.6.1.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

��������	
�

� � �� � �� � �

� � � �
� � ��

� �� � � �� ����� �

� � � �
� � ��

� � � � ��� ����� �

� � � �
� � ��

��� � � � �� ����� �

� � � �
� � ��

� � ! ��
����	
� �
� � �
� "
�� �

� � " � � � � � � �#
� ��
�� ����� �

� � ��� � �� ��# ��� �
�$

� � �� � �% � & �

� � �
� � ��

�� � � � ' � �� �% � & �

� � �
� � ��

� �� (��% � & �

� � �
� � ��

� �) � (��% � & �

� � �
� � ��

* � ����� ��% � & �

� � �
� � ��
+

��� �� �

� � � � 	
 � � � � 	 � �

 � � � � � � � � 	 � � � � � �

�� � �

� � � � � �

�� � �
 �

� � � � 	
 � � � � 	 � � � � � � � �

��� � �� � �
 � � � �

�� � �
 �

� � � � 	
 � � � � 	 � � � � � � � �

��� � �� � �
 � � � �

� � � � � � � � � � � �

� � � � 	 � � � � �

� � � 	 � � � � �

 � � � � � � � �

� � � � 	
 � � � � 	 � � � � �

� � � 	 � � � � � � � � �

� � � � �

�� � � �
� � � 	 � � � � �

Figure 4. Implementation of our reconvergence
predictor.

5.2. Reconvergence Training

As Table 1 indicates, there are four primary reconver-
gence behaviors exhibited by programs (rec below max, rec
rebound, rec above max and rec return). The approach taken
by the reconvergence predictor we implement is as follows:
(1) Assume that every reconvergence point fits one of the
four dominant categories. (2) Observe program behavior
to determine an appropriate candidate reconvergence PC for
each of the targeted categories. (3) Select the reconvergence
PC to be predicted from among the candidate points.

Of the four targeted categories, three of them spec-
ify a specific reconvergence PC. For return reconvergence
branches, the actual reconvergence PC value is given by the
top entry of the return address stack. The current best guess
for each of the other three categories are referred to as Below-
Potential, AbovePotential, and ReboundPotential. Figure 4A
indicates the full contents of our most aggressive RPT en-
try configuration, and the individual fields which will be de-
scribed below. Less aggressive implementations which tar-
get a subset of these reconvergence categories, and have cor-
respondingly less area, are also possible.

Next, we describe the training algorithm for each of the
potential reconvergence PCs explicitly tracked in an RPT en-
try. Each RPT entry contains one active bit per potential
reconvergence PC (3 bits total). When the targeted branch
is executed, each of these bits is set, and the corresponding
potential reconvergence PC is a candidate for update. After
matching or updating a particular potential Reconvergence
PC, the corresponding active bit is cleared, and that poten-
tial reconvergence PC cannot be updated until after the next
execution of the targeted branch.

Figure 3 shows example control flow graphs targeted by
the three categories below.

Rec below max reconvergence The vast majority of
branch instructions have reconvergence points in the rec be-
low max category. We train the corresponding potential re-
convergence PC (BelowPotential) as follows: (1) When a
branch is executed for the first time, initialize the BelowPo-
tential to the sequentially next PC following the branch. (2)
On all future executions of the branch, the BelowPotential
becomes active, and may be updated in response to commit-
ted PCs. Begin monitoring the PCs committed on behalf of
this RPT entry. (3) If the BelowPotential PC is committed,
the BelowPotential becomes inactive. (4) Else if a PC below
the BelowPotential is committed, update the BelowPotential
to the committed PC, and the BelowPotential becomes inac-
tive.

One of the implications of the above training algorithm is
that the BelowPotential can only be updated due to a taken
forward branch. It also converges quickly, because every
execution of the branch results in either a correct predic-
tion (when the reconvergence PC was executed), or an un-
expected control flow which leads to a forward branch over
this point, causing an update with a better prediction. Thus,
the total number of reconvergence mispredictions for a sin-
gle branch is bounded by the actual control flow, typically to
a small number.

Rec above max reconvergence The AbovePotential is
trained similarly to the BelowPotential, except it is only up-
dated in response to PCs committed which are above the tar-
geted branch and below the current AbovePotential value.
When a branch is first executed, the AbovePotential is ini-
tialized to an invalid value, and will be updated by the PC of
the first instruction executed above the targeted branch. This
potential reconvergence PC is guaranteed to ultimately yield
the correct reconvergence PC for branches in the rec above
max category.

Rebound Reconvergence For branches in this category,
the reconvergence point is a PC below the branch, but some
(though not necessarily all) control flows lead to below the
reconvergence point, and then “rebound” back up to the
reconvergence point. This potential reconvergence PC is
trained as follows: (1) Initially (and each time after the Be-
lowPotential is updated), the ReboundPotential is given the
value of the static instruction following the branch. (2) Af-
ter the BelowPotential has been executed, observe for the
execution of any PC below the targeted branch, below the
ReboundPotential, and above the BelowPotential. If such a
PC is committed, update the ReboundPotential, and the Re-
boundPotential becomes inactive. (3) If the ReboundPoten-
tial is ever executed (before or after the BelowPotential), it
becomes inactive.

5.3. Making Predictions

The above algorithms train the potential reconvergence
PCs for a branch. However, we also collect additional infor-
mation to enable a correct selection of the reconvergence PC
from among these.

Hit Return For each potential reconvergence PC, a Hit
Return bit is added. Initially (and whenever the correspond-
ing reconvergence PC is updated) this bit is cleared, indi-
cating that the potential reconvergence PC is always reached
prior to a return instruction. If a return ever occurs before
a potential reconvergence PC is executed, the corresponding
HitReturn bit for that potential reconvergence PC is set.

Always reaches For each potential reconvergence PC,
two “always reaches” bits are added (ARTaken and ARN-
Taken. Initially (and whenever the corresponding reconver-
gence PC value is updated) these bits are set, indicating that
the potential reconvergence PC is always reached when the
branch is taken or is not taken. If, for any execution of the
targeted branch, a second dynamic instance is committed be-
fore reaching the corresponding potential reconvergence PC,
the AR bit corresponding to the first outcome of this branch
is cleared.

Reaches first More than one potential reconvergence
PC may identify a valid reconvergence point for a particu-

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

rF
ra

ct
io

n
 o

f
P

re
d

ct
ed

 R
ec

o
n

ve
rg

en
ce

 P
o

in
ts rec <= 16 instrs rec <= 32 instrs rec <= 64 instrs rec <= 128 instrs rec <= 256 instrs rec > 256 instrs

Figure 5. Comparison of reconvergence prediction rates for (left to right in each group of bars) static, Skipper,
DMT, and four instantiations of our predictor.

lar branch. For example, both the BelowPotential and the
AbovePotential might be executed following each execution
of some branch. For such branches, the superior reconver-
gence point is the PC which is reached first between the two.
For each potential reconvergence PC, a ReachedFirst bit is
added. Initially, and whenever any potential reconvergence
PC is updated, all ReachedFirst bits are set (indicating that
that potential reconvergence PC is reached prior to all oth-
ers). Following the execution of the targeted branch, when-
ever a potential reconvergence PC is executed, if it is the first
reconvergence PC executed for this dynamic instance of the
targeted branch, the ReachedFirst bits for the other two po-
tential reconvergence PCs are cleared. In this way, if a par-
ticular potential reconvergence PC is always reached first,
ultimately, only it will have a ReachedFirst bit set.

Using the above information, a reconvergence PC is pre-
dicted for a conditional branch or indirect jump using the
following algorithm: (1) If HitReturn is set for all potential
reconvergence PCs, predict the function return. (2) If some
reconvergence PC has its reached first flag set, predict that
reconvergence PC. (3) If some reconvergence PC is always
reached whether the branch is taken or not taken, predict.
that reconvergence PC. (4) If some reconvergence PC is al-
ways reached when the branch is either taken or else always
reached when the branch is not taken, predict that reconver-
gence PC. (5) Predict the BelowPotential.

5.4. Comparison of Prediction Schemes

Figure 5 compares the accuracy of predicted reconver-
gence points made by the different reconvergence predictors
described to this point. From left to right, the predictors com-
pared are the static scheme, the Skipper scheme, the DMT
scheme, and four instantiations of our scheme. Each instance
of our scheme targets the same reconvergence categories as
the previous scheme, as well as adding a new category. The
four instances of our scheme, then, target below max recon-
vergence, adding return reconvergence, adding rebound re-
convergence, and adding above max reconvergence.

The DMT scheme, as described in that research, only
covers a fraction of branches. Therefore, we extend it, in

the most natural way, to make a prediction for each branch,
as follows. Backwards conditional branches and calls are
still handled as described in Section 4.2; both predict the
next static instruction as the reconvergence point. Forward
branches and indirect jumps, which are normally ignored by
DMT, are predicted to reconverge at the same PC as the in-
nermost loop which contains them. If no loop contains a
control instruction, then the predicted reconvergence PC for
the containing function is chosen instead.

We classify reconvergence prediction as follows. For each
scheme, the height of each bar indicates overall accuracy (i.e.
number of correct predictions), and each bar is divided ac-
cording to the distance in dynamic instructions between the
targeted control instruction and each correctly predicted re-
convergence point. For our scheme and the Skipper scheme,
we consider a reconvergence prediction to be incorrect if the
dynamically predicted reconvergence PC is not encountered
prior to the reconvergence PC provided by the static scheme.

Because the DMT scheme makes very conservative re-
convergence predictions, we define accuracy slightly differ-
ently. All predictions of reconvergence at function return are
automatically considered correct (distance to reconvergence
PC is still accurately tracked). Reconvergence predictions
for backwards conditional branches are handled as described
above.

Our simplest reconvergence predictor is quite effective in
most cases, with very low hardware overhead. For this im-
plementation (since the BelowPotential is always predicted
as the reconvergence PC), each RPT entry only stores a tag,
the BelowPotential, and one active bit.

While DMT achieves very high accuracy (given the re-
laxed definition of accuracy), its predictions are not very pre-
cise. For example, more than 80% of the reconvergence PCs
it predicted for mcf were not reached for more than 256 dy-
namic instructions. In contrast, each instantiation of our pre-
dictor chooses an instruction which appears within the next
16 dynamic instructions 80% of the time.

Our most aggressive predictor sees an average mispredict
rate of only 0.25%. Even our less aggressive predictors all
but eliminate mispredicts, except for vortex, which is an

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

outlier benchmark, having a significant number of reconver-
gence points above the targeted branch.

The relative portion of dark bars in the two graphs indi-
cate that our predictor is consistently predicting earlier re-
convergence points than the static scheme, and it is doing so
without any loss of accuracy.

5.5. Generality of the Predictor

The preceding analysis demonstrates the accuracy of our
predictor, but does not conclusively show that the properties
it exploits are not specific to a compiler, or even an ISA.
To validate that our technique is indeed general, we run ex-
periments when varying the underlying ISA (IA32), com-
piler (gcc -O2), and simulation length (full reference exe-
cution). Due to an extremely long runtime (� 2 trillion in-
structions), only the first 200B instructions in parser are
executed. Results are collected by analyzing programs using
Valgrind [14], an ATOM-like tool for IA32.

Overall, we find that the trends identified previously when
targeting the Alpha binaries continue to hold. On average,
94% of branches (which exhibit multiple outcomes) are in
the rec below max category. Because of this, near perfect
reconvergence prediction accuracy is achieved for nearly all
of the benchmarks, with nine of the 12 demonstrating pre-
diction accuracies of 99.9%, the exceptions being bzip
(99.0%), crafty (99.7%) and mcf (98.1%). This indicates
that the explored techniques will be transferable to different
machine configurations.

5.6. Implementation Issues

Our primary emphasis in this paper is to explore the po-
tential of these techniques. However, a reasonable imple-
mentation of this predictor is feasible, even under current
technology assumptions. We find that, even with constrained
hardware resources, reconvergence prediction accuracy is
not significantly reduced.

5.6.1 Realistically Sizing Hardware

If the table is large, it may not be feasible to train the RPT by
broadcasting the address of each committed instruction to all
RPT entries. The capacity and frequency of access can be re-
duced by adding two processor structures which can absorb
the majority of accesses. These structures are the Branch Fil-
ter Table (BFT) and the Active Reconvergence Table (ART),
which interact with the processor pipeline as illustrated in
Figure 4B.

The BFT serves as a filter to prevent branches which dy-
namically exhibit only one branch outcome from being en-
tered into the RPT. A significant number of branches have
this property, as shown in Table 1. When a branch com-
mits, if it is not already present in the RPT, an entry in the
BFT is allocated, and the outcome exhibited by the branch
for this execution is recorded in the BFT entry. When that
branch is committed in the future and it exhibits the oppo-
site outcome, an entry in the RPT is allocated for the branch.
Indirect jumps bypass the BFT and are entered directly into
the RPT.

BFT size Misp Rate ART size / lvl ART IP Misp Rate ART lvls / CP Misp Rate
64 9.03 8 1 22.06 1 / 1 4.49
256 2.58 8 4 1.19 1 / 4 2.66

1024 1.53 32 1 2.46 4 / 1 0.63
4096 1.52 32 4 0.52 4 / 4 0.50

Table 2. Overall reconvergence prediction accu-
racy from varying design parameters individually.
Parameters not specified are assumed to be ideal.

The ART is used to temporarily cache the subset of RPT
entries actively being trained. Each entry in the ART holds
RPT entries corresponding to the branches executed at a par-
ticular call level. The ART counter dictates the currently ac-
tive ART entry. When a targeted branch is committed, the
corresponding RPT entry (if it is not already present in the
current ART entry) is copied to the current entry. When a
call instruction is committed (and enters a new function), the
ART advances to the next entry, and any further branches
committed will cause their RPT entries to be copied into
this new entry. When a return instruction is committed, all
RPT entries corresponding to the current call level (within
the “current” ART entry) are evicted, and the ART counter
is decremented. Note that such an organization permits mul-
tiple copies of an RPT entry to be stored in the ART, each at
different call levels.

Thus, the only structure that needs to observe the commit
stream is a single frame of the ART. When an RPT entry
held in the ART is updated by an unexpected main thread
control outcome, that modified entry is copied back to the
RPT. Utilizing an ART, then, the RPT is only probed when
an RPT entry present in the ART is updated. Because the
ART holds a (small) subset of entries from the RPT, it can be
accessed in a significantly smaller time.

Feasibly sizing BFT and ART structures (the structures
accessed with high frequency) does not cost significant re-
convergence prediction accuracy compared to an ideal con-
figuration. Note that we observe a reduction in prediction
accuracy because of slower training of the RPT, but no en-
tries are incorrectly trained. Table 2 compares the overall
reconvergence mispredict rate as the size of both the BFT
and ART are varied, changing each design parameter inde-
pendently. Unspecified parameters are assumed to be ideal.
These results assume our most aggressive RPT entry imple-
mentation.

The left of Table 2 explores the impact of varying the BFT
size between 64 and 4096 entries (all configurations assume
4-way associativity). When a branch is committed, if no RPT
entry exists for the branch (and it is not already present in the
BFT), an entry is allocated for it using LRU replacement.

We observe the following trends. First, the Branch Filter
Table need not be overly large. While having only 64 entries
is too few, and reconvergence prediction accuracy suffers, a
table of 256 entries achieves nearly the prediction accuracy
of 4096 entries. A smaller BFT hurts prediction accuracy
because it delays creating an RPT entry for a branch which
exhibits one of its branch outcomes rarely. Note that even
a large BFT table suffers some accuracy loss because of the
need to observe both outcomes for a conditional branch be-
fore creating the RPT entry, during which time no reconver-
gence predictions are made for that branch.

In the middle of Table 2 we vary the number of RPT
entries which can be stored at each ART call level. If no

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

space for a new entry exists at the current level, a commit-
ting branch is ignored and no RPT entry is copied to the ART.
In fact, we observed benefits from not always entering RPT
entries into the ART, even when space was available, as al-
ways entering RPT entries permitted certain branches (for
example, those at the beginning of a function) to habitually
occupy spots that would be better given to other branches.

To avoid this problem, we vary the installation probability
(IP). When a branch commits, it has probability equal to one
over the IP of having its RPT entry inserted into the ART, if
space is available. If a branch commits with its RPT already
in the ART, then it has a probability equal to one over the
IP of retaining its entry; otherwise, the RPT entry is evicted
from the ART. This makes it possible to free up room in the
ART after all space is occupied.

We find that indiscriminately inserting RPT entries into
a small ART can significantly impact prediction accuracy.
However, when only entering (or retaining) an RPT entry
into the ART with 25% probability, overall misprediction
rate improves from 22.06% (when doing so with 100% prob-
ability) to 1.19%. In fact, an ART which stores only 8 entries
per level, but with an IP of 4 achieves greater prediction ac-
curacy than one with 32 entries and an IP of 1. If the ART
can store 32 RPT entries per call level, prediction accuracy
is nearly ideal.

The right of Table 2 limits the maximum number of call
levels which can be simultaneously tracked within the ART.
When a call instruction is committed, if not all call levels in
the ART are occupied, a new entry is allocated for the func-
tion just entered by the main thread. If no entries are avail-
able, the entry corresponding to the lowest call level in the
ART is preempted for the new call level. As with above, we
found benefit from only handling new call levels selectively.
When a call is executed, an ART entry is allocated only with
probability equal to the inverse of the call probability (CP).
If a call level is ignored, then no RPT entries are entered into
the ART for any branches at that call level. Note that further
calls from within that function may still be handled. Lim-
iting the number of call levels which can be tracked in the
ART impacts prediction accuracy if the number of levels is
less than four, but provided no significant impact otherwise.
Varying the CP did not have much impact.

Considering configurations which model realistic imple-
mentations for all parameters, we find that a prediction rate
over 95% is achieved when utilizing a 256 entry BFT and
a 2-level, 32-entry ART, requiring approximately 1.5KB of
storage. High prediction accuracy is achieved under realis-
tic hardware constraints because RPT entries are both trained
quickly, and because their ability to generate accurate predic-
tions is tolerant of incomplete program behavior information
– important program behavior will be repeated often enough
that the training still converges quickly. Also, while training
is still incomplete, many predictions using the intermediate
knowledge will still be correct.

5.6.2 Additional Implementation Optimizations

Additional factors which weigh in favor of a feasible imple-
mentation are a limited necessary RPT capacity, and tech-
niques to reduce the frequency of ART access.

The RPT itself need not be overly large. For most bench-
marks only a small number of total table entries is needed
— for all benchmarks other than crafty and gcc, the
RPT needs a capacity of fewer than 256 entries to track all
branches which dynamically exhibit multiple branch targets.
The working set of important branches is smaller. For our
most aggressive predictor, a reasonable implementation re-
quires only 80 bits per RPT entry – a 23 bit tag (supporting a
32MB binary), the three potential reconvergence PCs repre-
sented as 14-bit differential offsets, and 12 total bits for the
ReachedFirst, ARTaken, ARNTaken, and HitReturn flags. A
256 entry RPT with table entries of this size requires only
2.6KB. Because writes into this table are infrequent (and
reconvergence prediction does not impact correctness), ac-
cesses to it can be pipelined without bypass paths.

Second, we need not probe the ART for every commit-
ted instruction. An RPT entry can only be updated based on
the target of a control instruction, which is simply the PC
of the next committed instruction. This reduces accesses to
only 13% of dynamic instruction executions. On a processor
achieving the incredible performance of 8 instructions com-
mitted per cycle, this amounts to only one ART access per
cycle. In fact, the number of ART probes can be even fur-
ther reduced by accessing it only in response to taken branch
instances, with a small change in the address comparison
mechanism. This optimization would reduce the number of
ART accesses to 9% of dynamic instructions.

This section demonstrates techniques that provide highly
accurate dynamic reconvergence prediction. But reconver-
gence prediction is not a goal in itself. The next section
demonstrates that it is an effective tool to either enhance or
enable a varied set of control flow optimizations.

6. Applications of Reconvergence Information

This section demonstrates a few of the potential appli-
cations of dynamic reconvergence prediction. We demon-
strate its effectiveness in making two previously proposed
techniques, DMT and squash reuse, more effective. For
DMT, we demonstrate how greater performance is achieved
through knowledge of more complete reconvergence infor-
mation. We also show how squash reuse can be implemented
relying only on dynamic reconvergence prediction (as op-
posed to compiler analysis), yet achieve equal performance
gains.

Our reconvergence prediction also provides information
of a qualitatively new nature. We illustrate this by present-
ing initial results of a new optimization geared at reducing
the fetch of wrong path instructions — a technique we call
wrong-path prediction.

6.1 DMT

Dynamic Multithreading [3] is a technique for breaking
a program into multiple pieces, then executing these re-
gions in parallel on a simultaneous multithreaded proces-
sor. Large backing structures known as Trace Buffers are
employed to hold speculatively executed instruction results,
and instructions are re-dispatched from these structures if
they executed with invalid inputs. Programs are split across
loop and function call boundaries. The processor is aug-
mented with a back-end reconvergence stack, which tracks

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

S
p

ee
d

u
p

 o
ve

r
B

as
el

in
e

DMT

Our Scheme

Figure 6. Speedup from basic DMT and DMT
enhanced with our reconvergence predictor.

those function calls and loops for which spawning a specula-
tive thread is expected to yield performance gains, avoiding
spawns for threads expected to hurt. When the oldest (i.e.,
non-speculative) thread, which represents architected state,
matches the PC of the next oldest thread, instruction results
from the second-oldest thread are incorporated.

We next compare the performance of a baseline DMT im-
plementation and one which utilizes our reconvergence pre-
dictor. We utilize the most aggressive predictor described in
Section 5, which assumes an ideal BFT and ART. We extend
the basic technique by permitting speculative thread spawn
in response to indirect jumps, for which our technique accu-
rately predicts the reconvergence point. The base processor
we model is given in Section 3, and we implement a faith-
ful implementation of the DMT threading technique given
in [3].

Figure 6 shows the speedup over a baseline processor
achieved by a basic form of DMT compared to that from
a form of DMT enhanced with our reconvergence predic-
tion. In many cases we achieve further performance gains
over the original DMT. Perl and gap nearly double the
DMT gains, and gzip gets significant speedup where DMT
got none. These gains result primarily from more accurate
thread spawning (the ability to target branches whose re-
convergence PC was mispredicted in the baseline scheme).
A thread spawned from a future PC that will never be
reached prevents other, more speculative, threads from be-
ing matched in the main thread as well until it is squashed.
This increases thread context occupancy, and results in un-
necessary speculative thread squashes.

6.2 Squash Reuse

Prior research has identified that a significant number of
instructions executed under incorrect control dependences
actually perform useful work which can be committed to ar-
chitected state. One such technique known as squash reuse
has been proposed to exploit this fact by salvaging the work
of control-incorrect (but data-correct) instructions, the re-
sults of which would otherwise be entirely discarded.

The approach described in [11] implements squash reuse
through a heavy reliance upon reconvergence points. When
a control misspeculation is detected, the processor’s instruc-
tion window is searched for the reconvergence point of the
mispredicted control instruction (determined by the com-
piler). Instructions prior to this reconvergence instruction

0

0.02

0.04

0.06

0.08

0.1

0.12

bz
ip

cr
af

ty
eo

n
ga

p
gc

c
gz

ip
m

cf

pa
rs

er pe
rl

tw
olf

vo
rte

x
vp

r

av
er

ag
e

S
p

ee
d

u
p

 O
ve

r
N

o
 S

q
u

as
h

 R
eu

se

static

our scheme

Figure 7. Squash reuse speedup when using static
reconvergence and our reconvergence predictor.

are discarded and removed from the instruction window. In-
structions following the reconvergent point are retained.

As the processor restarts fetch from the correct control
path, any change to the data input values consumed by the
squashed (but retained) instructions is monitored. If their in-
put data values are invalidated, they are forced to re-execute.
As the processor re-fetches the squashed instruction PCs,
those that remain in the instruction window without having
been invalidated are directly incorporated into the processor
state, bypassing their execution.

A complication arises from using our more aggressively
derived reconvergence points as compared to static recon-
vergence points – they only represent the subset of possible
execution paths observed when following correct path execu-
tion. If control follows a wrong path that is never exercised
by the correct path execution, our reconvergence predictor
will not be trained for it (because it is always trained along
the correct path).

We address this problem by slightly modifying the win-
dow search for the reconvergence instruction. We look for
three types of convergence instructions, and if necessary,
choose the most appropriate. If we successfully match the
predicted reconvergence PC from our predictor to an in-
struction within the instruction window, then that instruc-
tion is selected as the reconvergence instruction. If not, then
we choose the first PC that is below the reconvergence PC
(Section 4), or any return from the current call level. This
amounts to allowing some simple just-in-time speculative
training of the reconvergence predictor on the current wrong
path.

Figure 7 illustrates the performance impact of squash
reuse. Results are shown as speedup over a processor with-
out squash reuse, and we show results for static reconver-
gence prediction, and our dynamic scheme. The static re-
convergence bars represent the closest approximation to the
original compiler-directed mechanism. We observe that our
prediction scheme performs comparably to the static scheme
without requiring compiler support or ISA modifications. It
achieves a speedup of 4.1% over the baseline, which actually
exceeds speedup from the static scheme by a tiny margin.
The number of squashed instructions which are reclaimed is
fairly consistent among the two modeled schemes.

6.3 Wrong path prediction

As noted in Section 6.2, the reconvergence points identi-
fied by the proposed predictor are only trained in response

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

Wrong Predictions 8231 6587 6614 3841 20149 2707 3122 12070 7512 9653 6313 9017
Correct Predictions 372857 461436 88814 293119 707846 57735 27463 194961 833928 397459 66355 192381
CBR WP Detected 21.1 50.4 11.5 62.2 64.8 10 5.6 50.9 41.2 33.4 75.8 27.2
IJump WP Detected - 100 43.2 47.5 59.5 40 25 - 82.5 - 50 -
ICall WP Detected - 68.2 - - 82.6 100 100 - 87.2 - 97.1 -

WP Fetch 176M 78M 36M 40M 87M 109M 72M 66M 87M 146M 9M 178M
WP Execute 82M 36M 20M 20M 46M 70M 26M 32M 51M 64M 6M 108M
WP Fetch (throttle) 155M 49M 30M 16M 39M 103M 69M 36M 33M 106M 3M 134M
WP Execute (throttle) 75M 23M 17M 12M 24M 67M 24M 16M 23M 44M 2M 80M
Benchmark bzip crafty eon gap gcc gzip mcf parser perl twolf vortex vpr

Table 3. Accuracy and effectiveness of our wrong path predictor. Results marked (throttle) correspond to a
processor which stops fetching when it predicts it is on the wrong path until all fetched control instructions are
resolved (or misprediction detected).

to instructions committed along the correct path, and wrong
path execution often fails to reach this predicted reconver-
gence point. For example, a return instruction might be en-
countered before a predicted reconvergence PC. If the recon-
vergence PC is correct (our predictor typically is) then the
return instruction must be the result of a control mispredic-
tion.

This phenomenon creates the opportunity for wrong path
prediction, in which the processor predicts that it is currently
on a mispredicted control path (without necessarily identify-
ing the responsible control instruction). Such predictions can
enable several potential optimizations, such as (1) reducing
power by ceasing fetch for predicted wrong path instructions,
(2) improving fetch bandwidth utilization in a multithreaded
processor by biasing against threads predicted to be on the
wrong path, and (3) improving performance by reversing the
prediction of an earlier, low confidence branch.

The basis for our wrong path predictor is the observation
that updates to RPT entries are infrequent. Therefore, our
predictor simply consists of a test at fetch time — if the fol-
lowing instructions were to be committed, would they result
in a change to an RPT entry? If so, predict that we are on
the wrong path. Note that this predictor is possible to imple-
ment precisely because reconvergence points identified by
this scheme are more aggressive than those determined by
a compiler; any reconvergence points determined by a com-
piler are necessarily conservative enough that they capture
even wrong path behavior.

The predictor can be implemented as follows. In the
front-end a small and fast secondary RPT table is added.
When a control instruction is fetched, the corresponding
RPT entry is copied from the larger, backing RPT into this
small RPT. This smaller RPT monitors fetched (rather than
committed) instructions and detects if a fetched instruction,
were it committed, would cause an RPT entry update. This
section assumes the aggressive EV8-like branch predictor
described in Section 3.

In most cases, this simple implementation of the wrong
path predictor yields good results. However, in some cases
(notably vpr), only a small number of wrong path excur-
sions are predicted. This is because, over the regions which
incur a large number of branch mispredictions, correct path
execution exhibits similar control flows to those along the
incorrect path. Thus, there is little “unique” behavior to dis-
tinguish wrong path behavior from correct path behavior.

In order to improve the effectiveness of this technique, we
slightly extend our RPT training algorithm in the following
ways. Each RPT entry which corresponds to a conditional
branch is extended to record whether both taken and not

taken outcomes have been exhibited by the branch. These
added flags are updated at commit time just like the other
state in an RPT entry, and also play a similar role for wrong
path prediction.

Additionally, because infrequent control paths will even-
tually be followed, we modify our algorithm to prevent RPT
entries from being trained for infrequent paths. We accom-
plish this in two ways. First, an internal counter is added
to each RPT entry. Each time the predicted reconvergence
PC is reached, this counter is incremented. If committing
(not fetching) a particular instruction would result in an RPT
entry update, this counter is checked. If the counter is be-
low 32, the RPT entry is updated. Otherwise, the counter is
halved, and the update is ignored. Wrong path predictions
are still generated in response to fetched instructions regard-
less of the counter value.

Second, a technique is introduced to “dislodge” RPT en-
tries which have become trained to infrequent program be-
havior. We record the number of times each branch is mis-
predicted, and how often the wrong path predictor detected
the misprediction ahead of time (in most programs a very
small fraction of branches are responsible for the vast major-
ity of control misspeculations). If, after a branch has been
executed at least 100 times, only 5% or fewer of the con-
trol misspeculations are detected for some particular branch,
we conclude that some RPT entries are overly trained. The
next time that branch is mispredicted, we reset all RPT en-
tries fetched between the fetch of the mispredicted branch
and that branch’s resolution. Because this technique can in-
crease the number of incorrect wrong path predictions (pre-
dicting the processor is on the wrong control path when it
was actually on the correct path), this optimization is only
applied when the overall wrong path prediction accuracy is
at least 90% (over a recent period of 128K cycles).

Table 3 indicates essential statistics for the implementa-
tion of our wrong path predictor.

In the table, wrong predictions indicates the number of
times the processor erroneously predicted that control was on
the wrong path, and correct predictions indicates the num-
ber of times the processor correctly predicted it was on the
wrong path. CBR WP Detected, ICall WP Detected, and
IJump WP Detected record the percentage of time that a mis-
predicted conditional branch, or misspeculated indirect call
or indirect jump was the initial cause of the processor being
on the wrong path, and the wrong path predictor detected that
the processor was on the wrong path before that instruction
was resolved.

WP Fetch and WP Exec indicate the total number of in-
structions fetched and executed while on the wrong control

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

path. WP Fetch (throttle) and WP Exec (throttle) indicate the
total number of instructions fetched and executed while on
the wrong control path in a processor implementing the first
of the proposed optimizations outlined above, ceasing fetch
following a prediction that the processor is on the wrong
path.

The results indicate that this simple form of wrong path
prediction can be effective. In all cases, a wrong path predic-
tion accuracy of more than 90% (and in most cases signifi-
cantly higher) is achieved. Ceasing instruction fetch at such
times can significantly reduces the number of wrong path in-
structions fetched and executed. On average, we observe a
34% reduction in wrong path fetched instructions, and four
benchmarks (gap, gcc, perl and vortex) reduce wrong
path fetching by more than 60%. In many cases, that comes
with very little cost in false predictions (which will degrade
performance).

7. Conclusion
This paper presents a novel approach to dynamic recon-

vergence prediction. Unlike previous approaches, which
used simple heuristics to enable particular instances of con-
trol flow optimizations, our technique is highly accurate, and
identifies aggressive reconvergence points, but operates en-
tirely at runtime, requiring only a 1.5KB hardware table
for most benchmarks. Our simplest reconvergence scheme
achieves a reconvergence misprediction rate of 12.5%. It is
more accurate than one previous dynamic scheme and signif-
icantly less conservative (more timely) than the other. Our
most aggressive scheme reduces this rate to only 0.25%,
making our predictor nearly as effective (and for some
benchmarks, more effective) at providing useful reconver-
gence points as the compiler.

We apply the reconvergence predictions derived by our
predictor to two previously proposed applications — aug-
menting a DMT processor architecture, and implementing
squash reuse. For squash reuse, we are as effective as the
compiler, eliminating the need for ISA changes to support
the scheme. For dynamic multithreading, we show the po-
tential for performance increases of up to 18% (average 4%).

Additionally, we present a novel optimization known as
the wrong path predictor. We find that by observing for po-
tential updates to our reconvergence predictor, we can often
identify that the processor is on the wrong control path. We
demonstrate a simple optimization geared at saving power
by stopping fetch when a wrong path excursion is detected,
resulting in a 34% reduction in wrong path fetches.

Acknowledgments
The authors would like to thank the anonymous reviewers

for their suggestions. This work was supported in part by
NSF grant CCR-0105743 and grants from Intel Corporation.

References

[1] T. Aamodt, P. Chow, P. Hammarlund, H. Wang, and J. Shen. Hard-
ware support for prescient instruction prefetch. In To Appear in Pro-
ceedings of the Fourth International Symposium on High-Performance
Computer Architecture, Feb. 2004.

[2] T. Aamodt, P. Marcuello, P. Chow, A. Gonzalez, P. Hammarlund,
H. Wang, and J. Shen. A framework for modeling and optimization of
prescient instruction prefetch. In SIGMETRICS, June 2003.

[3] H. Akkary and M. Driscoll. A dynamic multithreading processor. In
Proceedings of the 31st Annual International Symposium on Microar-
chitecture, 30 November–2 December 1998.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield,
and B. Smith. The tera computer system. In International Conference
on Supercomputing, pages 1–6, June 1990.

[5] C. Cher and T. Vijaykumar. Skipper: A microarchitecture for exploit-
ing controlflow independence. In 34th International Symposium on
Microarchitecture, Nov. 2001.

[6] Y. Chou, J. Fung, and J. Shen. Reducing branch misprediction penal-
ties via dynamic control independence detection. In International
Conference on SuperComputing, June 1999.

[7] A. Falcón, J. Stark, A. Ramirez, K. Lai, and M. Valero. Prophet/critic
hybrid branch prediction. In 31st Annual International Symposium on
Computer Architecture, May 2004.

[8] A. Klauser, A. Paithankar, and D. Grunwald. Selective eager execution
on the polypath architecture. In 25th Annual International Symposium
on Computer Architecture, June 1998.

[9] P. Marcuello and A. Gonzalez. Thread-spawning schemes for mul-
tithreaded architectures. In Proceedings of the Eighth International
Symposium on High-Performance Computer Architecture, Feb. 2002.

[10] P. Marcuello, A. Gonzalez, and J. Tubella. Speculative multithreaded
processors. In International Conference on SuperComputing, July
1998.

[11] E. Rotenberg, Q. Jacobson, and J. Smith. A study of control indepen-
dence in superscalar processors. In Proceedings of the Fifth Interna-
tional Symposium on High-Performance Computer Architecture, Jan.
1999.

[12] E. Rotenberg and J. Smith. Control independence in trace processors.
In 32nd International Symposium on Microarchitecture, June 1999.

[13] A. Roth and G. Sohi. Register integration: a simple and efficient im-
plementation of squash reuse. In MICRO33, Dec. 2000.

[14] J. Seward. Valgrind, an open-source memory debugger for x86-
gnu/linux. In http://valgrind.kde.org/, 2004.

[15] A. Seznec, S. Felix, V. Krishnan, and Y. Sazeides. Design tradeoffs
for the alpha ev8 conditional branch predictor. In 29th Annual Inter-
national Symposium on Computer Architecture, May 2002.

[16] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Au-
tomatically characterizing large scale program behavior. In
Tenth International Conference on Architectural Support for
Programming Languages and Operating Systems, Oct. 2002.
http://www.cs.ucsd.edu/users/calder/simpoint/.

[17] A. Sodani and G. Sohi. Dynamic instruction reuse. In ISCA97, June
1997.

[18] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar processors. In
22nd Annual International Symposium on Computer Architecture,
June 1995.

[19] J. G. Steffan and T. C. Mowry. The potential for using thread-level data
speculation to facilitate automatic parallelization. In Proceedings of
the Fourth International Symposium on High-Performance Computer
Architecture, Jan. 1998.

[20] D. Tullsen. Simulation and modeling of a simultaneous multithread-
ing processor. In 22nd Annual Computer Measurement Group Con-
ference, Dec. 1996.

[21] D. Tullsen, S. Eggers, and H. Levy. Simultaneous multithreading:
Maximizing on-chip parallelism. In 22nd Annual International Sym-
posium on Computer Architecture, June 1995.

[22] S. Wallace, B. Calder, and D. Tullsen. Threaded multiple path execu-
tion. In 25th Annual International Symposium on Computer Architec-
ture, June 1998.

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

