

The Fuzzy Correlation between Code and Performance Predictability
Murali Annavaram°, Ryan Rakvic°, Marzia Polito1, Jean-Yves Bouguet1, Richard Hankins°,

Bob Davies1
°Microarchitecture Research Lab (MRL), 1Systems Technology Labs (STL)

Intel® Corporation

Abstract
Recent studies have shown that most SPEC CPU2K
benchmarks exhibit strong phase behavior, and the Cycles
per Instruction (CPI) performance metric can be
accurately predicted based on program’s control-flow
behavior, by simply observing the sequencing of the
program counters, or extended instruction pointers (EIPs).
One motivation of this paper is to see if server workloads
also exhibit such phase behavior. In particular, can EIPs
effectively predict CPI in server workloads? We propose
using regression trees to measure the theoretical upper
bound on the accuracy of predicting the CPI using EIPs,
where accuracy is measure by the explained variance of
CPI with EIPs. Our results show that for most server
workloads and, surprisingly, even for CPU2K
benchmarks, the accuracy of predicting CPI from EIPs
varies widely. We classify the benchmarks into four
quadrants based on their CPI variance and predictability
of CPI using EIPs. Our results indicate that no single
sampling technique can be broadly applied to a large
class of applications. We propose a new methodology that
selects the best-suited sampling technique to accurately
capture the program behavior.

1. Introduction
Several recent studies [11][25][27][28][32] have

shown that many SPEC CPU2K benchmarks have a strong
relationship between control flow behavior and observed
performance. Control flow is usually characterized by the
sequence of program counters or basic blocks, while
performance is typically characterized by average Cycles
per Instruction (CPI) metric. These studies also showed
that there are only a few dominant phase behaviors in most
SPEC CPU2K benchmarks and, hence, simulating only
one representative sample from each phase can improve
simulation speed without unduly sacrificing accuracy.

Server class applications, such as On-Line
Transaction Processing (OLTP) and Decision Support
Systems (DSS), are crucial benchmarks for the design and
performance analysis of server processors. Previous
studies on server workloads [8][9][14][20] showed that
there are significant differences between SPEC and server
workloads. For instance, server workloads are
multithreaded, have much larger data and instruction foot
prints, contain non-loopy code, incur significant OS
activity, and suffer from higher cache miss rates, branch
mispredictions and frequent context switches [14].

Our research focuses on analyzing server workloads
and using the insights gained from the analysis to innovate
microarchitecture techniques to improve server processor
designs. Hence, the natural question arises: do server
workloads also exhibit similar phase behavior in spite of
their differences from SPEC? In this research our primary
goal is to quantify how well the program counter predicts
CPI. The program counter is called Extended Instruction
Pointer (EIP) in Intel architectures; in this paper we use
EIP to mean program counter. We employ regression trees
to precisely quantify the relationship between EIPs and
CPI; regression trees allow us to measure the theoretical
upper bound on the accuracy of predicting CPI using EIPs.

Using regression trees this paper presents a
thorough analysis of the predictability of CPI from EIPs
for three commercial workloads: an OLTP workload
called the Oracle Database Benchmark-C (ODB-C) [15]1,
a DSS workload called the Oracle Database Benchmark-H
(ODB-H) [2]1 and SPECjAppServer (SjAS) [4]. Our
results show that for ODB-C and SjAS that suffer
significant number of L3 misses, miss penalty
overshadows stalls due to other microarchitectural
bottlenecks. Hence, CPI is primarily determined by L3
misses and is independent of the EIPs. Other benchmarks,
such as query Q13 in ODB-H, execute a small code
segment repeatedly and predictably over a large data set
and exhibit cyclic phase behavior where CPI can be
determined by observing EIPs.

Using CPI variance and CPI predictability we
classify the benchmarks into four quadrants. We show that
the predictability across benchmarks varies widely and
there is a fuzzy boundary between phase and no-phase
behavior. Hence, no single sampling technique can be
broadly applied to a large class of workloads. We propose
using quadrant based classification to better understand the
wide range of workload behaviors and select the best-
suited sampling technique to accurately capture the
program behavior for each workload.

The rest of this paper is organized as follows.
Section 2 describes the setup and tuning of the three server
workloads. Section 3 describes the data capture process.
Section 4 introduces regression tree concept, which is the

1 ODB-C and ODB-H are not compliant TPC-C and TPC-H
Benchmarks™, even though there may be similarities in the database
schema and the transactions in the workload. Any results presented here
should not be interpreted as or compared to any published TPC
Benchmark results. TPC-C and TPC-H Benchmarks are trademarks of
Transaction Processing Performance Council (TPC).

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

heart of our methodology that quantifies the CPI and EIP
relationship. The results from the analysis are presented in
Section 5 and Section 6. Section 7 describes the quadrant
classification, and explains which sampling techniques are
best suited for each quadrant. Section 8 briefly describes
relevant prior work. We conclude in Section 9.

2. Workload Setup and Tuning

For this research, we use three commercial grade
server workloads: an OLTP workload, a DSS workload
(both based on the Oracle database server), and the SjAS
application server workload. For the purpose of
comparison, in Section 7 we also present interesting and
contrasting results from the SPEC CPU2K benchmarks.

2.1 Server Workload Description
The OLTP workload used in this study is the

Oracle® Database Benchmark-C (ODB-C), which is
derived from the Oracle 10g RDBMS. ODB-C simulates
an order-entry business where clients execute transactions
against a database. A more detailed description of ODB-C
can be found in [15].

The DSS workload used in this study is called
Oracle Database Benchmark-H (ODB-H). ODB-H also
uses the Oracle 10g RDBMS as the underlying database
server. ODB-H consists of 22 business oriented read-only
queries similar to those in TPC-H [2]. These queries
examine large volumes of data, perform complex
computations, and give answers to critical business
questions. In our setup all the queries are run sequentially
and individual query performance is separately measured.

SPECjAppServer (SjAS) [4] is designed to measure
the performance of Java 2 Enterprise Edition (J2EE) [5] on
application servers. This workload emulates supply chain
management, manufacturing, and order/inventory systems
of a large corporation. SjAS comprises of four
components. (1) The driver models customer orders that
induce transactions into the system. (2) The supplier
emulator models the supplier domain of the system. (3)
The database provides the repository capabilities for the
corporate, orders, manufacturing and supplier transaction
data. (4) The application server models the middle-tier that
handles the presentation logic, which serves the driver and
supplier emulator. It implements the business rules,
prepares the information for the presentation logic, and
queries the database. In this study we focus only on the
application server built on top of BEA™ Weblogic
Platform JRockit™ JVM version 8.1. The backend
database server is built using Oracle 9i Release 2 RDBMS.
2.2 Hardware Configuration

All our workloads, except SjAS, are run entirely on
an Intel® Itanium® 2 processor based system. The

™ BEA, Weblogic Platform and jRockit are trademarks of BEA Systems
Inc.

experimental system has four 900 MHz Itanium 2
processors running Red Hat Linux Advanced Server 2.1
using the kernel 2.4.9-e.10smp. The processor has three
levels of caches. The first level has a 64 KB split
instruction and data cache, while the second and third
levels have unified caches of 256 KB and 3 MB,
respectively. Our system is populated with 16 GB of
PC200 DDR memory and has 34 Ultra320 SCSI drives,
each with 73 GB of capacity. In our SjAS setup, the Intel
Itanium 2 processor based system is used as the
application server. An Intel Xeon based 4-way server is
used as the database backend. The driver and supplier
emulator are also run on the same backend database
server, thereby emulating the three-tier system on a two-
tier physical system. Since we focus only on the
application server of SjAS, combining database and client
layers does not impact our results.
2.3 Workload Tuning

Server workloads typically have numerous
configuration parameters that can influence their execution
behavior. For ODB-C, we use 14 GB as the System Global
Area (SGA). SGA is the main memory buffer cache
managed by the Oracle database server, which is intended
to hold as much of the database working set as possible in
memory. The results presented in this paper use an 800
warehouse ODB-C configuration with 56 clients. The data
is striped across 32 disks, one disk is used as a log disk
and one disk is used for OS. The CPU utilization for our
ODB-C run is near 95%.

ODB-H uses a 30 GB (similar to a TPC-H scaling
factor of 30) database that is striped across 32 disks and 1
disk is used as log disk. Oracle does not use as much SGA
when running ODB-H and hence the SGA is set to 2 GB.

The SjAS workload tuning is done in several steps.
In the first step, the backend database server is tuned using
a process similar to the process used for ODB-C. In the
second step, the application server is tuned by setting the
heap size for the JVM appropriately so as to reduce
frequent garbage collection invocation. In our setup we
used 1.5 GB as the heap size with parallel garbage
collection algorithm. We used an injection rate of 100 with
18 threads. Injection rate is the number of business
transactions requests per second that are injected by the
driver application into the application server.

3. Data Collection Methodology

This section describes the tools and framework used
to capture data and analyze phase behavior of programs
running on native hardware. Our analysis tool is built on
top of VTune [1], a commercially available software
performance analyzer for Intel architectures. It has the
ability to non-intrusively analyze any program, along with
the OS, running on native hardware, including
multithreaded programs running on multiprocessors.
These features are essential to analyze multithreaded

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

server programs, which are neither amenable for code
instrumentation nor recompilation (due to the lack of
source code). Our tool uses a multi-step process to analyze
the relationship between CPI and EIPs. In this section we
describe the first two steps that collect the raw data and
format the raw data for regression tree analysis. Detailed
description of our data collection methodology and our
tool infrastructure is presented in our previous work [32].
3.1 Data Collection Using VTune

In the first step, the tool uses the underlying VTune
driver to monitor a large number of performance/code
execution attributes stored in the embedded event counters
of the Intel processors while a program is being executed
on a physical system. It collects information, such as EIPs
and clock ticks, which are used in the later steps for
regression tree analysis and validation. VTune interrupts
execution at regular intervals (as measured by the number
of retired instructions) and records the EIP at the point of
interruption and event counter totals (e.g. clocktick count,
instruction count). Sampling at high frequency can
increase execution overhead. Conversely, too low a
sampling frequency will lead to sparse data. Based on our
previous study [32], we sampled all benchmarks once
every one million retired instructions, and sampled SjAS
once every 100,000 retired instructions. SjAS is sampled
at higher rate to capture any short dynamic code changes
due to JIT compilation. The worst case VTune overhead is
5% for SjAS, and at the one million sampling rate the
typical overhead of using VTune is about 2%.
3.2 Creating EIP Vectors (EIPVs)

The VTune samples from the first step are combined
to form EIP vectors. The execution of a program is divided
into equal intervals each of length 100 million instructions.
Each interval is represented by a vector that corresponds to
the histogram of EIPs collected during that interval. Let N
be the total number of unique EIPs recorded by VTune
during a complete run of a benchmark. The jth interval of
100 million instructions is then represented by the one-
dimensional vector vecx_j = [x1j; x2j; …; xNj]T, where xij is
the total number of times the ith unique EIP has been
sampled by VTune during the jth interval. If VTune is set
to sample code execution at its default rate of once every
million instructions executed, then each histogram vector
is computed on the basis of 100 consecutive samples. We
call vecx_j the jth EIPV. For each sampling interval we
subtract the time stamp counter value at the beginning of
the sampling from the time stamp counter value at the end
of the sampling period. The difference divided by the
number of instruction retired in that sample period gives
the instantaneous CPI. The average instantaneous CPI
EIPV interval can then be computed by averaging the
instantaneous values of all the samples in that interval.
3.3 EIPVs versus BBVs

While the main purpose of this work is to identify
the relationship between EIPs and CPI using regression

trees, our tool is capable of doing machine independent
phase detection using k-means clustering of EIPVs,
similar to the basic block vector (BBV) clustering
approach used in [27]. Note that in [27] the authors
collected BBVs by tracking the execution of every basic
block using full code profiling. Due to the limitations in
our data collection methodology, it is not feasible to
collect EIPs at such a high frequency. Furthermore, VTune
driver associates an EIP with every sample rather than a
basic block. Hence we used EIPVs in this study. While we
believe that VTune has adequately sampled code
execution to capture all the necessary information for
phase analysis [32], a direct comparison with BBVs is
beyond the scope of this paper.

4. Regression Tree Analysis of EIPVs

One objective of this paper is to quantify the
relationship between CPI and EIPs across a broad range of
workloads. In other words, how accurately can one predict
the CPI using only EIPs? To quantify this relationship we
use regression trees [6][7]. This section introduces the
concept of regression trees and describes how they can be
used to quantify this relationship.
4.1 Building a Regression Tree

The input to the regression tree build algorithm is a
collection of data points (x,y), formed by a
multidimensional input x (EIPV in our case), and an one-
dimensional output y (in our case, CPI). Regression trees
optimally and recursively subdivide the x space with
“walls”, portions of linear subspaces, so that the resulting
“chambers” contain input points whose corresponding y
values are as homogeneous as possible. Intuitively, in our
setup the EIPV space is recursively subdivided into
groups, such that the CPIs of all the EIPVs in each group
have the theoretically smallest possible variance.

In this section we first describe the algorithm for
building the root node of a regression tree, and then
describe how the algorithm recursively builds the entire
tree. The algorithm chooses the first unique EIP (say,
EIP0) as a tentative candidate for the root node and forms a
corresponding collection of tuples, tupEIP0 = [(n1, CPI1);
(n2, CPI2); …;(nm, CPIm)], where m is the total number of
execution intervals (of 100 million instructions), ni is the
number of times EIP0 is executed in the ith interval, and
CPIi is the instantaneous CPI of that interval.

The tupEIP0 is first split into tup_lEIP0 and tup_rEIP0,
based on the EIP0 execution count n1. The execution count
of EIP0 in each of the tuples in tup_lEIP0 is less than or
equal to n1 and those in tup_rEIP0 is greater than n1. The
algorithm then computes CPI variances of the tup_lEIP0 and
tup_rEIP0, and computes the weighted sum (weighted by
the number of tuples) of the two CPI variances. The
algorithm then repeats this same split process for each
unique ni, i.e. n1, n2… nm. It then chooses the split value ni
that minimizes CPI variance. In other words, of all the

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

possible two-way splits of tupEIP0, the split that reduces the
CPI variance most is selected as the optimal split for EIP0.

The algorithm then repeats the above process for all
the N unique EIPs, and for each EIP it selects the optimal
split. Finally, (EIProot, nroot) is picked as the root node,
where the EIProot minimizes the CPI variance over all the
EIPs and nroot is the corresponding split value. Intuitively,
the algorithm chooses an EIP that most closely tracks the
CPI variance as the root node of the tree.

After the initial split, all the EIPVs are separated
into two groups depending on the number of times EIProot
is executed in each vector. The algorithm then recursively
splits each of the sub population of EIPVs to form a
binary regression tree.
4.2 Regression Tree Example

In this section we use data from Table 1 as input to a
hypothetical example to explain the regression tree
building process. In this example the program has 3
unique EIPs (EIP0, EIP1, and EIP2) and is divided into
eight execution intervals. The EIPV for each interval
shows the number of times each unique EIP occurs during
that interval (in Millions); the CPI during that interval is
also shown in Table 1.

 CPI EIP0 EIP1 EIP2
EIPV0 1.0 100 0 0
EIPV1 1.1 80 0 20
EIPV2 2.6 0 20 80
EIPV3 0.6 80 20 0
EIPV4 2.0 20 20 60
EIPV5 2.1 20 20 60
EIPV6 2.5 20 0 80
EIPV7 0.7 80 20 0

Table 1 Example EIPV Table

Figure 1 Example Regression Tree with 4 Chambers
The regression tree algorithm first selects EIP0 as a

tentative candidate for the root node and forms a
corresponding tuple collection, tupEIP0. Each tuple contains
the number of times EIP0 is executed in an interval along
with the CPI in that interval. The tupEIP0 is then split into
two, tup_lEIP0 and tup_rEIP0, so as to minimize the CPI
variance. In this example an execution count of 20 is used
for the split and hence the tup_lEIP0 contains EIPV2,
EIPV4, EIPV5, and EIPV6; and tup_rEIP0 contains EIPV0,
EIPV1, EIPV3, and EIPV7. Similarly, EIP1 and EIP2 are

next considered as potential choices for the root node. For
each choice of root node the reduction in CPI variance is
noted. After comparing the CPI variance reduction of the
three EIPs, EIP0 is selected as the root node, since that
split reduces CPI variance more than splitting based on
any other EIP.

The root node is marked as (EIP0, 20). All EIPVs in
which EIP0 is executed for no more than 20 times are
placed in left subtree, and those EIPVs in which EIP0 is
executed for more than 20 times are placed in the right
subtree. Hence, EIPV2, EIPV4, EIPV5, and EIPV6 are
placed in the left subtree; and EIPV0, EIPV1, EIPV3, and
EIPV7 are placed in the right subtree. The regression tree
is further split recursively. Both the left subtree and the
right subtree are divided into two nodes to form a
regression tree with 4 leaf nodes, as shown in Figure 1.
4.3 Managing Complexity

Note that it is possible to keep subdividing the
EIPVs with walls until each chamber contains just one
data point (one EIPV). Obviously, in such an extreme case
the intra-chamber CPI variance goes to zero when there is
only one CPI associated with an EIPV. For practical
considerations, however, it is necessary to compromise
between the precision of the model, i.e. the overall
homogeneity of chambers, and the complexity of the tree,
i.e. the number of final chambers. In our model we chose
to restrict the maximum number of chambers to be no
more than 50 (1<=k<=50), since for most of our
applications going beyond 50 chambers does not reduce
the per chamber CPI variance. For each k, we seek the
optimal tree T_k that has k chambers.

For each chamber C of a tree T_k, we compute the
mean CPI value vC from the CPI value associated with
each EIPV in that chamber. Finally, we use cross-
validation [6], a well known technique to determine tree
complexity, to select a k value that strikes the balance
between precision and complexity. An intuitive and
simplified description of this technique is presented now.
4.4 Cross Validation Algorithm

The cross validation algorithm divides the input data
set, (EIPV, CPI), into 10 parts. A regression tree is built
using nine out of the ten parts (i.e. 90% of the input data)
and the remaining 10% of the data set (EIPV, CPI) is
subsequently inserted in the chambers of the regression
tree. For each EIPV inserted, its estimated CPI is the mean
CPI of the chamber (vC) where it is inserted. The sum of
the squared difference between estimated CPI and the
EIPV’s computed instantaneous CPI is called the cross
validation error. Intuitively, cross validation error gives us
an upper bound on the predictability of CPI using EIPs.

For the cross-validation process, let us first start
with k=1, the number of chambers in the tree equals 1. We
then repeat the following process for all k (1<=k<=50).
The input data set (D), namely (EIPV, CPI) pairs, is
randomly subdivided into 10 equal parts Dj (j=1,…,10).

EIP1 <= 0
EIP2 > 60

EIP0, 20

EIP2, 60 EIP1, 0

EIPV4, 2.0
EIPV5, 2.1

EIPV2, 2.6
EIPV6, 2.5

EIPV0, 1.0
EIPV1, 1.1

EIPV3, 0.6
EIPV7, 0.7

EIP1 > 0

EIP0 > 20 EIP0<=20

4 Chambers (k=4)

EIP2 <= 60

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

We remove the jth part Dj (10% of the EIPVs and their
associated CPI values) from the data set and use the
remaining 90% of the data to build a regression tree Tk, as
described in Section 4.1. We repeatedly remove one of the
10 parts and build a regression tree using the remaining
nine parts. Using all possible combinations of nine out of
the 10 parts, 10 different regression trees are built. Thus,
any tree Tk is built using only 90% of the input data and
has k chambers (leaf nodes).

For a tree Tk, we first choose one EIPV (say p) from
the 10% data that was left out from building that tree, and
place p in the most appropriate chamber in that tree. For
instance, if the root node of Tk is marked (EIProot, nroot) we
look for the number of times EIProot is executed in p.
Remember that each EIPV contains one execution count
entry for each unique EIP in the program, even if the count
is zero. If the value is less than or equal to nroot we traverse
the left node of the tree, otherwise we visit the right node.
We recursively traverse the tree until we reach the leaf
chamber, Cp, where p is placed. Then the CPI for p is
predicted as vCp, the mean CPI of that chamber computed
from the 90% of the data as described before. The squared
difference between the computed instantaneous CPI
associated with p and the predicted CPI is Ek,p = (CPI(p)-
vCp)2. We then repeatedly compute the squared difference
for each EIPV in the remaining 10% of the data. We
compute the sum of all the squared differences to form Ek,i
(i=1,…,10) for a given regression tree Tk. We compute Ek,i
corresponding to each of the 10 regression trees that were
built using 90% of the data.

The above procedure is repeated for each of the ten
trees, for a given k. The partial sums of errors for the 10
trees are summed together and averaged over 10, the
number of trees,

10

10

1
,∑

== i
ik

k

E
E

The relative error is then considered for all k

(number of leaf nodes) as

E
ERE k

k =

where E is the variance of the total CPI population. The
asymptotic value for the relative cross validation error
REk=∞ gives us an upper bound on predicting CPI using
just EIPs. In this paper, we consider REkopt to be a good
approximation of REk=∞, if the relative error REkopt is
within 0.5% of REk=∞. Note that in this framework, we
have repeatedly attempted to predict the behavior in CPI
space of 10% of our data by using the behavior in the
remaining 90% of the data, which is commonly considered
as a good approximation of the tradeoff between precision
and model complexity.

4.5 Interpreting Regression Tree Results
Before using the regression tree methodology, it is

important to first look at the CPI variance of the sampled
data. If the variance (E) is small to begin with, indicating a
uniform CPI throughout execution, there is often no need
to build elaborate regression functions for predicting CPI.
A simple average is often enough; note that a regression
tree with a single leaf and no split corresponds to the
simple average estimator. On the other hand, if variance is
sufficiently large, then the value of REk=∞ provides many
useful insights into the program behavior. It represents the
amount of information the EIPVs provide for predicting
CPI. For instance, REk=∞=0.15 means that 85% (1-REk=∞)
of the CPI variance can be explained by the EIPVs.
Furthermore, if the small REk=∞ is reached with a small
number of chambers, say kopt<20, then the workload
behavior exhibits a small number of dominant phases. On
the other hand, when REk=∞~1 then EIPVs have no
relationship with CPI, or CPI cannot be predicted using
only EIPVs. Finally, irrespective of the value REk=∞, if this
error limit is reached only with a large number of
chambers, then it indicates that the relationship between
EIPVs and CPI is not regulated by few dominant phases,
and hence, it is unlikely that using a few samples will
accurately represent the whole program behavior.

A comprehensive treatment of the regression tree
technique is presented in [6]. In our implementation we
use rpart from the R programming environment [7].
4.6 Regression Tree versus K-means Clustering

It is interesting to note the similarities and
differences of regression trees with previously proposed
clustering algorithms. In previous approaches EIPVs (or
an equivalent control flow representation, e.g. BBVs [27])
are subdivided into “clusters” using K-means clustering
algorithm. The fundamental difference between regression
and K-means clustering lies in the amount of information
used to compute the phases or clusters. With K-means
clustering, the phases are determined solely using the
EIPVs; in particular, CPI values are not used in
determining the clusters. Thus, in K-means, it is assumed,
rather than proven, that the points belonging to the same
cluster have very similar CPI.

Since CPI does not drive the clustering process in
K-means, it is possible that some clusters have high CPI
variance although the EIPVs in the cluster are similar. To
overcome this problem, recently stratified sampling [25]
has been proposed, which uses more than one sample from
those phases that have high CPI variance. Although
stratified sampling does reduce the CPI variance, the
fundamental assumption in k-means remains the same:
CPI can be accurately predicted using just EIPVs.

 When using regression trees, the “clustering” (i.e.
the partitioning of the EIPV space into chambers) is driven
by CPI variations between EIPV points being grouped into
the same chamber. Therefore, by construction, the EIPVs

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

that ended up in the same chamber will have similar CPI
values. In other words, the difference between the two
approaches is that, in regression trees, CPI optimally
drives the subdivision of EIPVs into chambers and, hence,
can show the inherent limitation in predicting CPI with
just EIPVs. The grouping of EIPVs into chambers in the
regression tree is conceptually similar to grouping EIPVs
into K-means clusters.

In order to quantify these differences, we compare
the regression tree clustering to the K-means clustering for
all of our workloads. We choose k-values independently
from both schemes, where the k value is less than 50 and
the performance predictability is minimized for each
algorithm respectively. On average, the regression trees
improve CPI predictability by 80% compared to K-means.
Even though they both are clustered on EIP execution
behavior, the lack of CPI information may hamper the
performance of the K-means algorithm. The major focus
of this research is not to compare regression trees to K-
means, and hence the rest of this paper demonstrates the
correlation between code flow and performance
predictability.

5. ODB-C and SPECjAppServer

This section presents the results from regression tree
analysis of transaction intensive server workloads ODB-C
and SjAS. We show how the relative error (REk) for a
regression tree Tk changes with increasing k, the number
of chambers in the tree, and analyze the reasons for the
observed behavior.

Figure 2 shows how relative error changes by
increasing the number of chambers (k) in the regression
trees for ODB-C and SjAS. For ODB-C, as the number of
chambers in the regression tree increases, the relative cross
validation error increases above one. For SjAS, as the
number of chambers in the regression tree increases, the
relative error remains flat at approximately 0.96, and the
minimum error, REkopt, is about 0.8 when k=3. In ODB-C
EIPVs are entirely inadequate to explain CPI variance,
while only 20% of the CPI variance in SjAS can be
explained by EIPVs. Note that the regression trees are
built using 90% of the data and the error is computed
using the remaining 10% of the data. If the relationship
between EIPVs and CPI is entirely random, any “optimal
split” decision made on 90% of the data may not
generalize when using the remaining 10% of the data. This
can lead in some cases to more complex models
performing worse than simple ones (RE>1)!

To understand the reasons for large relative errors in
Figure 2, we present the EIP spread with time and CPI
variations with time, in Figure 3, for a 60 second interval
during the steady state execution of ODB-C and SjAS.
Compared to SPEC CPU2K benchmarks, ODB-C and
SjAS execute a large number of unique instructions that
are rather uniformly distributed. For instance, the number

of unique EIP samples collected by VTune (Y-axis in EIP
spread graphs) in the 60 second interval is 23,891 in ODB-
C and 31,478 in SjAS. On the other hand, the mcf
benchmark from CPU2K suite has only 646 unique EIP
samples in a 200 second interval. Furthermore, the CPI
variance is only 0.01 for ODB-C and even for SjAS it is
0.03. The small CPI variance for the large number of
unique EIPs indicates that the performance is independent
of the code.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

0 5 10 15 20 25 30
K

R
el

at
iv

e
Er

ro
r

ODB-C
SjAS

Figure 2 Relative Error Trend for ODB-C & SjAS

(a) ODB-C: EIP (top), CPI (bottom)

(b) SjAS: EIP (top), CPI (bottom)

Figure 3 EIP & CPI Spread of (a) ODB-C, and (b) SjAS
5.1 CPI Breakdown

To explain why CPI is independent of the code, we
breakdown the instantaneous CPI into four components:
time to execute instructions (WORK), I-cache and branch
misprediction stalls (FE), D-cache miss stalls mostly due
to L3 misses (EXE), and all the remaining backend stalls
(OTHER). The embedded counters in an Intel Itanium 2
processor can measure the stall times and hence the CPI
breakdown presented here is precise. Figure 4 and Figure
5 show the CPI breakdown for ODB-C and SjAS,
respectively. In ODB-C, L3 cache miss stalls are
responsible for more than 50% of the total CPI through out
the entire execution interval. In SjAS also, L3 cache miss
stalls account for 30-40% of the total CPI. Since L3 misses
occur frequently and uniformly throughout the execution,
CPI variations caused by other microarchitectural

ODB-C

SjAS

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

bottlenecks are overwhelmed by the large L3 miss latency
- 160 cycles in the Itanium 2 processor. This uniform CPI
behavior leads us to conclude that random sampling is an
effective mechanism to approximate CPI behavior.

0.0

0.5

1.0

1.5

2.0

2.5

Time

C
PI

EXE

FE

Other

Work

Figure 4 CPI Breakdown for ODB-C

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Time

C
PI

EXE

FE

Other

Work

Figure 5 CPI Breakdown for SjAS

5.2 Threading Behavior
Another possible reason why the regression tree

analysis shows the lack of relationship between EIPVs and
CPI is the presence of multiple threads in ODB-C and
SjAS. Server workloads typically have many separate
lightweight and heavyweight threads of execution in order
to hide large network and disk I/O latencies. Compared to
SPEC CPU2K benchmarks, server workloads spend a
significant portion of their execution time in the OS
performing thread scheduling, managing disk I/O (in the
case of ODB-C) and network I/O (in the case of SjAS).
For instance, SPEC CPU2K benchmarks spend less than
1% of the execution time in the OS, while ODB-C spends
nearly 15% of the execution time in the OS. Because of
frequent disk or network I/O, threads voluntarily yield
CPU, and there is frequent context switching as a result.
ODB-C executes about 2600 context switches per second,
while SjAS executes about 5000 context switches per
second. In contrast, SPEC CPU2K benchmarks execute
about 25 context switches per second.

We sampled the entire system when using the
VTune based sampling process to collect the data. Hence
the input data used in regression tree analysis contains the
EIP samples from multiple threads, and even a single
EIPV may have EIPs from many threads. It is possible that
although there is a relationship between EIPs and CPI
within each thread, this relationship may be hidden when
multiple threads interact with each other and thus no phase
behavior will be apparent. On the other hand, thread
switching may reinforce the relationship if multiple
threads are executing the same code.

The VTune sampling process tags each collected
sample with a thread/process number that generated the
sample. To approximate the impact of thread switching on
phase behavior, we first separate the samples on a per
thread basis, creating the EIPVs and the corresponding
CPIs for each thread. We then use per thread EIPV and
CPI data as input to the regression tree analysis. Figure 6
and Figure 7 shows the relative error with and without
thread separation for ODB-C and SjAS, respectively. The
thread-separated regression tree result is labeled thread
and the original regression tree is labeled nothread. The
relative error does decrease when threads are separated,
indicating that per thread EIPVs can predict CPI better,
although minimally. For instance, the relative error dips
below one for ODB-C and below 0.8 for SjAS. However,
for both of these workloads, even after separating threads
EIPVs have little relationship with CPI. We conclude that
for ODB-C and SjAS the large code size coupled with the
dominating L3 cache misses reduces CPI predictability
with just EIPVs.

0

0.4

0.8

1.2

1.6

2

0 4 8 12 16 20 24 28
K

R
el

at
iv

e
Er

ro
r

nothread thread

Figure 6 ODB-C Relative Error With & Without Threads

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25
K

R
el

at
iv

e
Er

ro
r

nothread thread

Figure 7 SjAS Relative Error With & Without Threads

6. ODB-H

Although we analyzed all 22 queries in ODB-H, in
this section we focus on two categories of behaviors that
are seen across all the ODB-H queries. The two categories
are: queries with strong EIP-CPI relationship and queries
with weak EIP-CPI relationship.
6.1 Strong EIP-CPI relationship

We use the query Q13 to represent the class of
ODB-H queries where EIPVs can explain more than 85%
of the CPI variations. This query determines the
distribution of customers by the number of orders they
have made. It counts and reports how many customers
have no orders, how many have 1, 2, 3, etc. The three

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

dominant operations in this query are scan, join and sort of
two large tables (about 7 GB of data). In other words, Q13
executes a small segment of code repeatedly over a large
amount of data.

Figure 8 shows how relative error changes by
increasing the number of chambers (k) in the regression
tree for Q13. Unlike ODB-C and SjAS, as the number of
chambers in the regression tree increases, the relative cross
validation error decreases rapidly and the asymptotic value
reaches 0.15 when kopt=9. Hence 85% of the CPI variance
in Q13 can be explained by EIPVs. Furthermore, we only
need 9 chambers to optimally capture the CPI variance
with EIPVs.

Q13 executes for 538 seconds, while the number of
unique EIPs is only 4129 (Y-axis on Figure 9 (top)). The
loopy execution behavior of Q13 results in a good CPI
prediction using EIPVs. Figure 9 shows the EIP and CPI
plots. From the visual inspection of these graphs one can
see the strong EIP and CPI relationship.

It is worth mentioning that while ODB-H is also
multithreaded there are significant differences between
ODB-H threads and ODB-C threads. For instance, the
context switching rate in ODB-H is less than that of ODB-
C. Furthermore, in ODB-H, queries are broken into basic
database operations, such as scan, sort, and join. Each
query may execute multiple instances of the same
operation and one thread is assigned per each instance.
Hence, several identical threads may be operating
concurrently, and therefore thread switching does not
appear to be as detrimental.

0

0.2

0.4

0.6

0.8

1

1.2

1 9 13 18 24 28 34 39

K

Re
la

tiv
e

Er
ro

r

Figure 8 Relative Error Trend for Q13

Figure 9 EIP(top) & CPI(bottom) Spread for Q13

6.2 Weak EIP-CPI relationship
The second category of queries demonstrates weak

EIP-CPI relationship. We highlight the regression tree
analysis for one such query, Q18, in Figure 10. The
relative error goes above 1 and stays relatively flat at
about 1.1 with increasing k. Hence, using EIPVs can not
explain the CPI behavior in Q18.

This query finds a list of the top 100 customers who
have ever placed large quantity orders, which is
functionally similar to Q13. Both queries involve scan,
join and sort operations on two identical tables. However,
the Oracle query optimizer uses a sequential scan (access
every row in a table) in Q13, and an index scan operation
in Q18 where rows in a large table are accessed using a B-
tree index. It is well known [31] that index based table
scans can have a highly unpredictable behavior due to the
randomness of the tree traversal. Hence, even though Q18
repeatedly executes a small code segment, the CPI varies
significantly.

0

0.2

0.4

0.6

0.8

1

1.2

1 4 6 8 10 12 14 16 18 29 32

K

Re
la

tiv
e

Er
ro

r

Figure 10 Relative Error Trend for Q18

Figure 11 EIP(top) & CPI(bottom) Spread for Q18

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Time

C
P

I EXE

FE

Other

Work

Figure 12: ODB-H: Q18 CPI Breakdown

Figure 11 shows the EIP and CPI variations with
time for Q18. For the purpose of illustration, a dotted box
is drawn around the EIP spread and the corresponding CPI
variation graphs. Although the EIP spread shows that the
same set of EIPs are accessed over time, the corresponding
CPI graph shows significant variance, resulting in a poor
CPI prediction using just EIPVs. While the CPI curves
(Figure 11(bottom)) may indicate some apparent phases it
is important to note that our approach is only trying to find
correlations between EIPVs and CPI. Hence, even though
there may be phases in CPI if they are not correlated with
EIPVs the relative error will be high.

As further evidence, we present the CPI breakdown
of Q18 in Figure 12. The graph shows that there is no

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

single microarchitectural bottleneck that dominates the
CPI. Furthermore, the bottlenecks to performance change
with time. For instance, within a short execution interval
L3 cache miss stalls (EXE) dominate for a brief time while
at other times front end stalls (due to branch mispredicts
and I-cache misses) can replace L3 cache miss stalls as the
primary bottleneck to performance.

7. Quadrant Classification of Benchmarks

Based on the results and analysis presented in
Sections 5 and 6 we propose using CPI predictability in
conjunction with CPI variance as the appropriate way to
characterize the phase behavior of a benchmark. Figure 13
shows a conceptual two dimensional space. The X-
dimension is the CPI variance and the Y-dimension is the
relative error in predicting CPI with EIPVs, i.e. CPI
predictability. The X-axis indicates the degree of CPI
variance, with low variance to the left and high variance to
the right. The Y-axis indicates the degree of predictable
phase behavior based on the value of the relative error. In
this paper we chose a CPI variance threshold of 0.01 for
differentiating two regions along the X-dimension. We use
a relative error of 0.15 as the threshold for differentiating
the two regions along the Y-dimension. Using these two
thresholds, we can identify four quadrants of workload
behaviors as shown in Figure 13.

Benchmarks in Q-I have insignificant CPI variance
and exhibit limited phase behavior, where CPI can not be
explained using EIPVs. A Q-II benchmark has low CPI
variance but still exhibits strong phase behavior, so even
the low CPI variance can be explained using EIPVs.
Similarly, benchmarks in Q-III and Q-IV both have high
CPI variance, but their phase behavior ranges from weak
to strong.

Table 2 shows the quadrant classification of all the
SPEC CPU2K benchmarks, ODB-H queries, ODB-C and
SjAS workloads. Surprisingly, 13 of the 26 SPEC
benchmarks are categorized in Q-I along with ODB-C,
where CPI variance can not be explained using EIPVs.
The CPI variances of these benchmarks are extremely low
and, hence, EIPVs can not predict/differentiate such small
variations in CPI. This result may seem to contradict
previous research; however, Dhodapkar and Smith [11]
compared three different phase detection techniques and
showed that a simple conditional branch count based
phase detection correlates 83% of the time with basic
block vectors [25][27][28]. Our results show low CPI
variance makes it fairly easy to predict CPI within a small
error margin and, hence, all three phase detection methods
are likely to be equally effective. In fact, our analysis
shows that simple sampling techniques, such as uniform
sampling [30] with a few samples, work well even for a
complex workload like ODB-C when CPI variance is low.

There are only five benchmarks in Q-II. These are
the benchmarks where even subtle CPI changes are well

captured by EIPVs and are excellent candidates for phase
based trace sampling proposed in [25]. However, there is
no clear advantage of using phase based trace sampling
over uniform sampling for these workloads due to the
insignificant CPI variance.

<=0.01 >0.01
CPI VARIANCE

PH
A

S
E

B
E

H
A

VI
O

R

S
TR

O
N

G

 W

EA
K

R
E<

=0
.1

5

R

E>
0.

15

Q-I Q-III

Q-II Q-IV

Figure 13 Quadrant-based Workload Characterization

Bmark CPI var REkoptr Bmark CPI var REkoptr
ODB-C 0.00 1.01 Q18 0.65 1.00

twolf 0.00 1.00 SjAS 0.03 0.90
crafty 0.00 0.88 gcc 0.04 0.50
eon 0.00 0.80 vpr 0.07 0.40
Q1 0.01 0.78 bzip2 0.02 0.33

parser 0.01 0.71 gap 0.08 0.33
mesa 0.00 0.63 lucas 0.09 0.26

equake 0.00 0.61 vortex 0.03 0.24
gzip 0.01 0.60 Q7 0.04 0.19

galgel 0.00 0.54 perlbmk 0.02 0.18
applu 0.00 0.42 Q5 0.03 0.18
Q19 0.01 0.37 Q10 0.02 0.18
Q3 0.01 0.36 Q15 0.03 0.18

mgrid 0.00 0.35 Q9 0.02 0.17
wupwise 0.00 0.35 Q4 0.02 0.16

art 0.00 0.33
sixtrack 0.00 0.30

Q16 0.01 0.25
Q17 0.01 0.15 Q22 0.04 0.15

ammp 0.01 0.11 Q21 0.02 0.15
Q2 0.01 0.09 Q13 0.02 0.15

facerec 0.01 0.06 Q8 0.02 0.12
Swim 0.01 0.04 Q20 0.03 0.12

 Q14 0.08 0.09
 apsi 0.03 0.09
 fma3d 0.05 0.08
 Q12 0.06 0.06
 Q6 0.03 0.06
 mcf 1.63 0.06
 Q11 0.02 0.04

Table 2 Benchmarks Classified into Quadrants
 Q-III is an interesting quadrant. Seven of the SPEC

CPU2K benchmarks, seven of the ODB-H queries, and
SjAS are in Q-III, where CPI variance is high and the
benchmarks have weak phase behavior. For instance, gcc
and gap are known for their lack of phase behavior, and
our classification concurs with these earlier findings, as
these benchmarks are classified into Q-III. The regression
tree analysis sheds new light that benchmarks such as gcc
and gap are not just slightly more difficult to predict their
CPI from control flow. Instead, the CPI of these
benchmarks is determined by micro-architectural
bottlenecks in the system (such as high branch
misprediction rate in gcc) which may not correlate well

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

with EIPVs. Apart from CPU2K benchmarks, several
ODB-H queries also inherently lack phase behavior. An
interesting future research topic is to see if a much higher
sampling rate of EIPs can capture the CPI variance.

Benchmarks in Q-IV have a high CPI variance and
strong phase behavior. Hence these benchmarks are ideal
candidates for phase based trace sampling. 12 (nine ODB-
H queries and three SPEC) of the 49 benchmarks are in
this quadrant. Using just a few samples based on phase
analysis can capture the CPI behavior without needing to
use uniform sampling, which may unnecessarily require a
large number of small samples.

7.1 Classification Robustness

The partitioning of the workloads into four
quadrants is clearly influenced by the choice of the two
thresholds for CPI variance and RE. Our choice of the two
thresholds is based on the design constraints under which
this research is conducted. Varying these thresholds can
shift some of the benchmarks to adjacent quadrants. In any
case, regardless of specific values chosen for the
thresholds, the quadrant based classification helps to better
understand the different behaviors of the various
workloads, and provides a quantitative means for
comparing different benchmarks.

In order to show that the results presented in this
paper are not significantly influenced by the in-order
Itanium 2 processor, we analyzed EIP and CPI relationship
on both a 2.3 GHz Intel Pentium 4 processor based system
and a 2.0 GHz Intel Xeon processor based system. Due to
the setup complexity of the server workloads, we only
analyze a subset of the SPEC CPU2K benchmarks on
these systems. Our results showed that CPI variance is
higher on both systems when compared to the Itanium 2
based system. For benchmarks that have high cache miss
rate, such as mcf, the CPI variance is the highest in the
Pentium 4 based system which does not have a large L3
cache. Even with a larger CPI variance in the Pentium 4
based systems, we found that overall, compared to Itanium
2 based systems relative error is 30% better on Pentium 4
and 7% worse on Xeon. Thus, we conclude that quadrant
classification is not simply an artifact of our base machine.
Instead it shows the inherent relationship between EIP and
CPI in our workloads.

In this work, we have fixed the EIPV size at 100
million instructions. To evaluate the impact of this
parameter, we performed our regression analysis with an
EIPV size of both 50 million and 10 million instructions,
keeping the VTune sampling frequency unchanged.
Relative to 100 million instruction, on average the CPI
variance goes up 7% and 29% for the 50 million and 10
million respectively, corroborating prior research [30].
The Relative Errors were 13% and 14% higher for the 50
million and 10 million, respectively. As the size of the
EIPV is reduced, both the CPI variance and relative error
are increased, moving some of the Q-IV benchmarks into

Q-III. We surmise that, when building EIPVs with fewer
than 100 million instructions, it may be necessary to
increase the sampling frequency to obtain enough EIP
samples per EIPV.

8. Related Work

Database workloads have been the primary server
benchmarks for most microarchitecture research on server
processors. These benchmarks are analyzed using either
simulation of a scaled down workload setup [9][26] or by
monitoring a full scale system behavior using performance
counters [8][20]. The results broadly show that database
applications have large instruction and data memory
footprints, suffer from frequent context switches, and have
significant cache miss rates and branch mispredictions.
These previously published results motivated our research
to analyze the phase behavior of server workloads and to
compare them with SPEC benchmarks.

Researchers have proposed several techniques to
detect and exploit phase behavior of programs
[11][12][25][27][28][29]. Broadly, their results showed
that an application’s EIP determines CPI, independent of
the underlying machine configuration. However, they
focused on analyzing the phase behavior of SPEC
benchmarks while this paper focuses on server workloads.
Most of the previous studies worked under the assumption
that CPI can be accurately predicted from control flow; in
this paper we present a methodology to find the theoretical
upper bound on the accuracy of predicting the CPI using
only EIPVs.

Sherwood et al.[27][28] proposed phase-based
sampling that simulates a small number of (about 10) code
segments, each with 10-100 million instructions. They
used the execution frequency of basic blocks to form basic
block vectors (BBV) over consecutive segments of 100M
instructions. The BBVs are then grouped into k clusters
using k-means clustering technique. Perelman et al. [25]
presented a further refinement that proposed using more
than one sample from those clusters that have high CPI
variance. To reduce fast-forwarding time during
simulation they evaluated algorithms for picking
simulation points earlier in a program's execution. The
fundamental premise of their work is that program
performance (CPI) strongly correlates with BBVs. Our
results show that some SPEC benchmarks do exhibit such
relationship, which corroborates with their results.
However, we show that for server workloads and several
of the SPEC benchmarks, EIPVs alone are inadequate to
accurately predict CPI. It is also important to note the
BBVs are collected by tracking the execution of every
basic block using full code profiling. Hence, it is possible
that some of the information that was captured by
sampling at a fine granularity may be lost in our VTune
based sampling at one million instructions. It would be an

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

interesting future research topic to compare regression tree
analysis using EIPVs and BBVs.

Eeckhout et al. [13] used statistical modeling to
efficiently explore the workload space in order to reduce
simulation time. Their analysis is based on collecting
several characteristics, such as instruction mix and cache
misses, over the entire program execution and then using
principal component analysis to determine a reduced set of
orthogonal parameters. Using this analysis they infer
which program input pairs have similar behavior and
prune redundant pairs for design exploration.

Wunderlich et al. [30] also used statistical
approaches to reduce simulation time of SPEC
benchmarks. Their strategy consists of taking numerous
samples (50,000) of small size (1,000 instructions) at
regular intervals during program execution. Their work
presents a systematic way to compute the optimal
frequency of sampling and the size of each sample that
guarantees a specified error bound for the Instructions Per
Cycle (IPC) estimate. We show that for some of the server
workloads where the relationship between CPI and EIPVs
is not strong, using statistical sampling is in fact a good
way to improve simulation accuracy.

Dhodapkar and Smith [11] also identified program
phase changes and represented each phase by a working
set signature. These working set signatures are stored in a
history table to recognize repeating signatures, which are
then removed from design space exploration. Sun et al.
[29] used a modified working set signature to compute the
entropy of SpecJBB and ECPerf.

Duesterwald et al. [12] proposed monitoring
several embedded event counters in IBM Power
processors to derive relationships between different
performance attributes: IPC, branch mispredictions, and
cache misses. They observed that these metrics exhibit
periodicity, which can be exploited in the design of on-line
table based history predictors. The goal of their study was
to design accurate table based predictors for programs
with large variability.

9. Conclusions and Future Work

Recent studies have shown that most SPEC CPU2K
benchmarks exhibit strong phase behavior, and CPI can be
predicted accurately by just observing the EIPVs. This
paper focuses on complex server workloads and analyzes
whether their CPI behavior can also be accurately
predicted by EIPVs. To quantify how accurately EIPVs
can predict CPI, this paper uses regression trees that can
optimally subdivide the EIPV space into groups, such that
the CPIs of all the EIPVs in that group have the
theoretically smallest possible variance.

This paper presents a thorough phase analysis using
regression trees for three commercial workloads: ODB-C,
ODB-H, and the SPECjAppServer (SjAS) benchmark.
ODB-C and SjAS have a large code size, and L3 misses

occur frequently and uniformly throughout the execution.
The large L3 miss penalty overshadows stalls due to other
microarchitectural bottlenecks. Hence, CPI is primarily
determined by L3 misses and is independent of the EIPVs.
On the other hand, several ODB-H queries exhibit strong
phase behavior, where EIPVs can explain more than 85%
of the CPI variance. These queries execute a small code
segment repeatedly over a large data set and, hence,
exhibit cyclic behavior across many different performance
metrics. Interestingly, ODB-H query Q18 also executes
small code segment repeatedly over a large data set, yet
fails to exhibit phase behavior since the performance
varies significantly with input data. We analyze thread
interaction in server workloads to show that frequent
thread switching has a relatively small impact on the CPI
predictability with EIPVs. For workloads such as ODB-C
and SjAS, the large code size coupled with the dominating
L3 cache miss stall component precludes any possibility of
predicting CPI with just EIPVs.

We classify the benchmarks into four quadrants
based on the CPI variance and predictability of CPI using
EIPVs. We show that server workloads and, surprisingly,
even CPU2K benchmarks, exhibit a wide range of phase
behaviors. Previous phase analysis techniques produced
good phase-based sampling results for many CPU2K
benchmarks, partly because some of the CPU2K
benchmarks (in Q-II and Q-IV) truly exhibit strong phase
behavior. However, a significant number of CPU2K
benchmarks (in Q-I) lack phase behavior, but appear to
give good clustering results, mainly because their CPI
variance is extremely small. For these benchmarks, even a
few random samples can adequately capture CPI behavior.
Our experimental results indicate that no single sampling
technique can be broadly applied to a large class of
applications. We propose using quadrant based
classification to better understand the wide range of
workload behaviors and select the best-suited sampling
technique to accurately capture the program behavior for
each workload.

Our primary results presented are collected from
Itanium-2 based systems. Prior work [15] did an extensive
comparative study of the behavior of ODB-C on a Quad
Xeon and a Quad Itanium server. Their results showed
that 60% of the CPI can be attributed to L3 misses on both
MP systems. They concluded that for benchmarks such as
ODB-C (and ODB-H) that suffer large number of L3
misses, the underlying ISA has minimal impact on overall
behavior; only major system level features, such as a
different processor interconnect and different bus design,
can impact their behavior. Therefore, we expect similar
phase behavior of these complex workloads irrespective of
the ISA.

In this paper we focused primarily on the correlation
between CPI and EIPs and used microarchitectural event
counts only to analyze the observed correlations. CPI is
just one of the performance metrics used by processor

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

designers to evaluate the impact of alternative design
choices. Measuring the correlation between CPI and EIPs
provides a simple unifying approach for classifying the
benchmarks. However, our analysis highlights the inability
of just using EIPs in predicting performance. It is
interesting to study how code flow impacts non-CPI
metrics, such as cache misses and branch mispredictions.
One future study is to analyze complex interactions
between code path, CPI and the underlying
microarchitectural events.

10. Acknowledgements
This work benefited greatly from the valuable

insights provided by John Shen. We would like to thank
Brad Calder for providing detailed comments on this
work.

11. References
[1] VTune: http://www.intel.com/software/products/vtune/.
[2] TPC-H: http://www.tpc.org/tpch/default.asp
[3] EcPerf: http://ecperf.theserverside.com/ecperf/
[4] SPECjAppServer: http://www.specbench.org/osg/jAppServer

[5] J2EE: http://java.sun.com/j2ee/

[6] L. Breiman, J.H. Friedman, R.O. Olshen, and C.J. Stone.
Classification and Regression Trees. Kluwer Publishers 1984.

[7] RPART: http://www.r-project.org/
[8] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs on a

Modern Processor: Where Does Time Go? In Proceedings of the
25th Intl. Conference on Very Large Data Bases, pages 266–277,
September 1999.

[9] L.A Barroso, K. Gharachorloo, and E. Bugnion. Memory System
Characterization of Commercial Workloads. In Proceedings of the
25th Intl. Symposium on Computer Architecture, pages 3–14, June
1998.

[10] P.T. Bickel and K.A. Doksum. Mathematical Statistics. Basic Ideas
and Selected Topics. Vol I. Second Edition. Prentice Hall, 2001.

[11] A. Dhodapkar and J.E. Smith. Managing Multi-Configuration
Hardware via Dynamic Working Set Analysis. In Proceedings of
the 29th Intl. Symposium on Computer Architecture, pages 233–
244, May 2002.

[12] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
Predicting Program Behavior and its Variability. In Proceedings of
the Intl. Conference on Parallel Architectures and Compilation
Techniques, pages 220-231, September 2003.

[13] L. Eeckhout, H. Vandierendonck, and K.D. Bosschere. Workload
Design: Selecting Representative Program-Input Pairs. In
Proceedings of the Intl. Conference on Parallel Architectures and
Compilation Techniques, pages 83–94, September 2002.

[14] M. Franklin, W.P. Alexander, R. Jauhari, A.M.G. Maynard, and
B.R. Olszewski. Commercial Workload Performance in the IBM
Power2 Risc System/6000 Processor. IBM J. of Research and
Development, 38(5): 555–561, 1994.

[15] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H.
Nueckel, and J.P. Shen. Scaling and Characterizing Database
Workloads: Bridging the Gap between Research and Practice. In
Proceedings of the 36th Annual Intl. Symposium on
Microarchitecture, pages 151-162, December 2003.

[16] J.A. Hartigan and M.A. Wong. Algorithm AS136: A k-means
Clustering Algorithm. In Applied Statistics, vol 28, pages 100–108,
1979.

[17] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer Series in Statistics, 2001.

[18] M. D. Hill. Evaluating a $2M Commercial Server on a $2K PC and
Related Challenges. In the Seventh Workshop on Computer
Architecture Evaluation using Commercial Workloads, Feb 2004.

[19] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An
Introduction to Cluster Analysis. Wiley, New York, 1990.

[20] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E.
Baker. Performance Characterization of a Quad Pentium Pro SMP
Using OLTP Workloads. In Proceedings of the 25th Intl.
Symposium on Computer Architecture, pages 15–26, June 1998.

[21] A.J. KleinOsowski and D.J. Lilja. MinneSPEC: A New SPEC
Benchmark Workload for Simulation-Based Computer Architecture
Research. Computer Architecture Letters, 1, June 2002.

[22] A. Y. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering:
Analysis and an Algorithm. Advances in Neural Information
Processing Systems 14, MIT Press, Pages 849-856, 2002.

[23] S. Nussbaum and J.E. Smith. Modeling Superscalar Processors via
Statistical Simulation. In Proceedings of the Intl. Conference on
Parallel Architectures and Compilation Techniques, pages 15–24,
September 2001.

[24] D. Pelleg and A. Moore. X-means: Extending K-means with
efficient estimation of number of clusters. In Proceedings of the
17th Intl. Conference on Machine Learning, pages 727–734, June
2000.

[25] E. Perelman, G. Hamerly, and B. Calder. Picking Statistically Valid
and Early Simulation Points. In Proceedings of the Intl. Conference
on Parallel Architectures and Compilation Techniques, pages 244-
255, September 2003.

[26] P. Ranganathan, K. Gharachorloo, S.V. Adve and L.A. Barroso.
Performance of Database Workloads on Shared-Memory Systems
with Out-of-Order Processors. In Proceedings of the 8th Intl.
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 307–318, October 1998.

[27] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution
Analysis to Find Periodic Behavior and Simulation Points in
Applications. In Proceedings of the Intl. Conference on Parallel
Architectures and Compilation Techniques, pages 3–14, September
2001.

[28] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and
Prediction. In Proceedings of the 30th Intl. Symposium on
Computer Architecture, pages 336–347, June 2003.

[29] M. Sun, J.E. Daly, H. Wang and J.P. Shen. Entropy-based
Characterization of Program Phase Behaviors. In the Seventh
Workshop on Computer Architecture Evaluation using Commercial
Workloads, Feb 2004.

[30] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe.
SMARTS: Accelerating Microarchitecture Simulation via Rigorous
Statistical Sampling. In Proceedings of the 30th Intl. Symposium on
Computer Architecture, pages 84–95, June 2003.

[31] S. Chen, P.B. Gibbons and T.C. Mowry. Improving index
performance through prefetching. In Proceedings of the 2001 ACM
SIGMOD Intl. conference on Management of data, pages 235-246,
May 2001.

[32] B. Davies, J. Bouguet, M. Polito, and M. Annavaram. iPART : An
Automated Phase Analysis and Recognition Tool. Technical Report
IR-TR-2004-1-iPART, Intel Corporation, February 2004.
ftp://download.intel.com/research/library/IR-TR-2004-1-iPART.pdf

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004)
1072-4451/04 $20.00 © 2004 IEEE

