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Abstract 
Recent studies have shown that most SPEC CPU2K 
benchmarks exhibit strong phase behavior, and the Cycles 
per Instruction (CPI) performance metric can be 
accurately predicted based on program’s control-flow 
behavior, by simply observing the sequencing of the 
program counters, or extended instruction pointers (EIPs). 
One motivation of this paper is to see if server workloads 
also exhibit such phase behavior. In particular, can EIPs 
effectively predict CPI in server workloads? We propose 
using regression trees to measure the theoretical upper 
bound on the accuracy of predicting the CPI using EIPs, 
where accuracy is measure by the explained variance of 
CPI with EIPs. Our results show that for most server 
workloads and, surprisingly, even for CPU2K 
benchmarks, the accuracy of predicting CPI from EIPs 
varies widely. We classify the benchmarks into four 
quadrants based on their CPI variance and predictability 
of CPI using EIPs. Our results indicate that no single 
sampling technique can be broadly applied to a large 
class of applications.  We propose a new methodology that 
selects the best-suited sampling technique to accurately 
capture the program behavior.  

1. Introduction 
Several recent studies [11][25][27][28][32] have 

shown that many SPEC CPU2K benchmarks have a strong 
relationship between control flow behavior and observed 
performance. Control flow is usually characterized by the 
sequence of program counters or basic blocks, while 
performance is typically characterized by average Cycles 
per Instruction (CPI) metric. These studies also showed 
that there are only a few dominant phase behaviors in most 
SPEC CPU2K benchmarks and, hence, simulating only 
one representative sample from each phase can improve 
simulation speed without unduly sacrificing accuracy.  

Server class applications, such as On-Line 
Transaction Processing (OLTP) and Decision Support 
Systems (DSS), are crucial benchmarks for the design and 
performance analysis of server processors. Previous 
studies on server workloads [8][9][14][20] showed that 
there are significant differences between SPEC and server 
workloads. For instance, server workloads are 
multithreaded, have much larger data and instruction foot 
prints, contain non-loopy code, incur significant OS 
activity, and suffer from higher cache miss rates, branch 
mispredictions and frequent context switches [14].  

Our research focuses on analyzing server workloads 
and using the insights gained from the analysis to innovate 
microarchitecture techniques to improve server processor 
designs. Hence, the natural question arises: do server 
workloads also exhibit similar phase behavior in spite of 
their differences from SPEC? In this research our primary 
goal is to quantify how well the program counter predicts 
CPI. The program counter is called Extended Instruction 
Pointer (EIP) in Intel architectures; in this paper we use 
EIP to mean program counter. We employ regression trees 
to precisely quantify the relationship between EIPs and 
CPI; regression trees allow us to measure the theoretical 
upper bound on the accuracy of predicting CPI using EIPs.   

Using regression trees this paper presents a 
thorough analysis of the predictability of CPI from EIPs 
for three commercial workloads: an OLTP workload 
called the Oracle Database Benchmark-C (ODB-C) [15]1, 
a DSS workload called the Oracle Database Benchmark-H 
(ODB-H) [2]1 and SPECjAppServer (SjAS) [4]. Our 
results show that for ODB-C and SjAS that suffer 
significant number of L3 misses, miss penalty 
overshadows stalls due to other microarchitectural 
bottlenecks. Hence, CPI is primarily determined by L3 
misses and is independent of the EIPs. Other benchmarks, 
such as query Q13 in ODB-H, execute a small code 
segment repeatedly and predictably over a large data set 
and exhibit cyclic phase behavior where CPI can be 
determined by observing EIPs.  

Using CPI variance and CPI predictability we 
classify the benchmarks into four quadrants. We show that 
the predictability across benchmarks varies widely and 
there is a fuzzy boundary between phase and no-phase 
behavior. Hence, no single sampling technique can be 
broadly applied to a large class of workloads. We propose 
using quadrant based classification to better understand the 
wide range of workload behaviors and select the best-
suited sampling technique to accurately capture the 
program behavior for each workload. 

The rest of this paper is organized as follows. 
Section 2 describes the setup and tuning of the three server 
workloads. Section 3 describes the data capture process. 
Section 4 introduces regression tree concept, which is the 

                                                      
1 ODB-C and ODB-H are not compliant TPC-C and TPC-H 
Benchmarks™, even though there may be similarities in the database 
schema and the transactions in the workload.  Any results presented here 
should not be interpreted as or compared to any published TPC 
Benchmark results.  TPC-C and TPC-H Benchmarks are trademarks of 
Transaction Processing Performance Council (TPC). 
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heart of our methodology that quantifies the CPI and EIP 
relationship. The results from the analysis are presented in 
Section 5 and Section 6. Section 7 describes the quadrant 
classification, and explains which sampling techniques are 
best suited for each quadrant. Section 8 briefly describes 
relevant prior work. We conclude in Section 9. 

2. Workload Setup and Tuning 

For this research, we use three commercial grade 
server workloads: an OLTP workload, a DSS workload 
(both based on the Oracle database server), and the SjAS 
application server workload. For the purpose of 
comparison, in Section 7 we also present interesting and 
contrasting results from the SPEC CPU2K benchmarks.  

2.1 Server Workload Description 
The OLTP workload used in this study is the 

Oracle® Database Benchmark-C (ODB-C), which is 
derived from the Oracle 10g RDBMS. ODB-C simulates 
an order-entry business where clients execute transactions 
against a database. A more detailed description of ODB-C 
can be found in [15]. 

The DSS workload used in this study is called 
Oracle Database Benchmark-H (ODB-H). ODB-H also 
uses the Oracle 10g RDBMS as the underlying database 
server. ODB-H consists of 22 business oriented read-only 
queries similar to those in TPC-H [2]. These queries 
examine large volumes of data, perform complex 
computations, and give answers to critical business 
questions. In our setup all the queries are run sequentially 
and individual query performance is separately measured. 

SPECjAppServer (SjAS) [4] is designed to measure 
the performance of Java 2 Enterprise Edition (J2EE) [5] on 
application servers. This workload emulates supply chain 
management, manufacturing, and order/inventory systems 
of a large corporation. SjAS comprises of four 
components.  (1) The driver models customer orders that 
induce transactions into the system. (2) The supplier 
emulator models the supplier domain of the system. (3) 
The database provides the repository capabilities for the 
corporate, orders, manufacturing and supplier transaction 
data. (4) The application server models the middle-tier that 
handles the presentation logic, which serves the driver and 
supplier emulator. It implements the business rules, 
prepares the information for the presentation logic, and 
queries the database. In this study we focus only on the 
application server built on top of BEA™ Weblogic 
Platform JRockit™ JVM version 8.1. The backend 
database server is built using Oracle 9i Release 2 RDBMS. 
2.2  Hardware Configuration 

All our workloads, except SjAS, are run entirely on 
an Intel® Itanium® 2 processor based system. The 
                                                      
™ BEA, Weblogic Platform and jRockit are trademarks of BEA Systems 
Inc. 

experimental system has four 900 MHz Itanium 2 
processors running Red Hat Linux Advanced Server 2.1 
using the kernel 2.4.9-e.10smp. The processor has three 
levels of caches. The first level has a 64 KB split 
instruction and data cache, while the second and third 
levels have unified caches of 256 KB and 3 MB, 
respectively. Our system is populated with 16 GB of 
PC200 DDR memory and has 34 Ultra320 SCSI drives, 
each with 73 GB of capacity. In our SjAS setup, the Intel 
Itanium 2 processor based system is used as the 
application server. An Intel Xeon based 4-way server is 
used as the database backend. The driver and supplier 
emulator are also run on the same backend database 
server, thereby emulating the three-tier system on a two-
tier physical system. Since we focus only on the 
application server of SjAS, combining database and client 
layers does not impact our results.   
2.3 Workload Tuning  

Server workloads typically have numerous 
configuration parameters that can influence their execution 
behavior. For ODB-C, we use 14 GB as the System Global 
Area (SGA). SGA is the main memory buffer cache 
managed by the Oracle database server, which is intended 
to hold as much of the database working set as possible in 
memory. The results presented in this paper use an 800 
warehouse ODB-C configuration with 56 clients.  The data 
is striped across 32 disks, one disk is used as a log disk 
and one disk is used for OS. The CPU utilization for our 
ODB-C run is near 95%.  

ODB-H uses a 30 GB (similar to a TPC-H scaling 
factor of 30) database that is striped across 32 disks and 1 
disk is used as log disk. Oracle does not use as much SGA 
when running ODB-H and hence the SGA is set to 2 GB.  

The SjAS workload tuning is done in several steps. 
In the first step, the backend database server is tuned using 
a process similar to the process used for ODB-C. In the 
second step, the application server is tuned by setting the 
heap size for the JVM appropriately so as to reduce 
frequent garbage collection invocation. In our setup we 
used 1.5 GB as the heap size with parallel garbage 
collection algorithm. We used an injection rate of 100 with 
18 threads. Injection rate is the number of business 
transactions requests per second that are injected by the 
driver application into the application server.  

3. Data Collection Methodology 

This section describes the tools and framework used 
to capture data and analyze phase behavior of programs 
running on native hardware. Our analysis tool is built on 
top of VTune [1], a commercially available software 
performance analyzer for Intel architectures. It has the 
ability to non-intrusively analyze any program, along with 
the OS, running on native hardware, including 
multithreaded programs running on multiprocessors. 
These features are essential to analyze multithreaded 

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) 
1072-4451/04 $20.00 © 2004 IEEE 



  
  

server programs, which are neither amenable for code 
instrumentation nor recompilation (due to the lack of 
source code). Our tool uses a multi-step process to analyze 
the relationship between CPI and EIPs.  In this section we 
describe the first two steps that collect the raw data and 
format the raw data for regression tree analysis.  Detailed 
description of our data collection methodology and our 
tool infrastructure is presented in our previous work [32]. 
3.1 Data Collection Using VTune 

In the first step, the tool uses the underlying VTune 
driver to monitor a large number of performance/code 
execution attributes stored in the embedded event counters 
of the Intel processors while a program is being executed 
on a physical system. It collects information, such as EIPs 
and clock ticks, which are used in the later steps for 
regression tree analysis and validation. VTune interrupts 
execution at regular intervals (as measured by the number 
of retired instructions) and records the EIP at the point of 
interruption and event counter totals (e.g. clocktick count, 
instruction count). Sampling at high frequency can 
increase execution overhead. Conversely, too low a 
sampling frequency will lead to sparse data. Based on our 
previous study [32], we sampled all benchmarks once 
every one million retired instructions, and sampled SjAS 
once every 100,000 retired instructions. SjAS is sampled 
at higher rate to capture any short dynamic code changes 
due to JIT compilation. The worst case VTune overhead is 
5% for SjAS, and at the one million sampling rate the 
typical overhead of using VTune is about 2%.   
3.2 Creating EIP Vectors (EIPVs) 

The VTune samples from the first step are combined 
to form EIP vectors. The execution of a program is divided 
into equal intervals each of length 100 million instructions. 
Each interval is represented by a vector that corresponds to 
the histogram of EIPs collected during that interval. Let N 
be the total number of unique EIPs recorded by VTune 
during a complete run of a benchmark. The jth interval of 
100 million instructions is then represented by the one-
dimensional vector vecx_j = [x1j; x2j; …; xNj]T, where xij is 
the total number of times the ith unique EIP has been 
sampled by VTune during the jth interval. If VTune is set 
to sample code execution at its default rate of once every 
million instructions executed, then each histogram vector 
is computed on the basis of 100 consecutive samples. We 
call vecx_j the jth EIPV.  For each sampling interval we 
subtract the time stamp counter value at the beginning of 
the sampling from the time stamp counter value at the end 
of the sampling period. The difference divided by the 
number of instruction retired in that sample period gives 
the instantaneous CPI. The average instantaneous CPI 
EIPV interval can then be computed by averaging the 
instantaneous values of all the samples in that interval.   
3.3 EIPVs versus BBVs 

While the main purpose of this work is to identify 
the relationship between EIPs and CPI using regression 

trees, our tool is capable of doing machine independent 
phase detection using k-means clustering of EIPVs, 
similar to the basic block vector (BBV) clustering 
approach used in [27]. Note that in [27] the authors 
collected BBVs by tracking the execution of every basic 
block using full code profiling. Due to the limitations in 
our data collection methodology, it is not feasible to 
collect EIPs at such a high frequency. Furthermore, VTune 
driver associates an EIP with every sample rather than a 
basic block. Hence we used EIPVs in this study. While we 
believe that VTune has adequately sampled code 
execution to capture all the necessary information for 
phase analysis [32], a direct comparison with BBVs is 
beyond the scope of this paper.  

4. Regression Tree Analysis of EIPVs 

One objective of this paper is to quantify the 
relationship between CPI and EIPs across a broad range of 
workloads. In other words, how accurately can one predict 
the CPI using only EIPs? To quantify this relationship we 
use regression trees [6][7]. This section introduces the 
concept of regression trees and describes how they can be 
used to quantify this relationship. 
4.1 Building a Regression Tree  

The input to the regression tree build algorithm is a 
collection of data points (x,y), formed by a 
multidimensional input x (EIPV in our case), and an one-
dimensional output y (in our case, CPI). Regression trees 
optimally and recursively subdivide the x space with 
“walls”, portions of linear subspaces, so that the resulting 
“chambers” contain input points whose corresponding y 
values are as homogeneous as possible. Intuitively, in our 
setup the EIPV space is recursively subdivided into 
groups, such that the CPIs of all the EIPVs in each group 
have the theoretically smallest possible variance.  

In this section we first describe the algorithm for 
building the root node of a regression tree, and then 
describe how the algorithm recursively builds the entire 
tree. The algorithm chooses the first unique EIP (say, 
EIP0) as a tentative candidate for the root node and forms a 
corresponding collection of tuples, tupEIP0 = [(n1, CPI1); 
(n2, CPI2); …;( nm, CPIm)], where m is the total number of 
execution intervals (of 100 million instructions), ni is the 
number of times EIP0 is executed in the ith interval, and 
CPIi is the instantaneous CPI of that interval.  

The tupEIP0 is first split into tup_lEIP0 and tup_rEIP0, 
based on the EIP0 execution count n1. The execution count 
of EIP0 in each of the tuples in tup_lEIP0  is less than or 
equal to n1 and those in tup_rEIP0  is greater than n1.  The 
algorithm then computes CPI variances of the tup_lEIP0 and 
tup_rEIP0, and computes the weighted sum (weighted by 
the number of tuples) of the two CPI variances. The 
algorithm then repeats this same split process for each 
unique ni, i.e. n1, n2… nm. It then chooses the split value ni 
that minimizes CPI variance. In other words, of all the 
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possible two-way splits of tupEIP0, the split that reduces the 
CPI variance most is selected as the optimal split for EIP0.  

The algorithm then repeats the above process for all 
the N unique EIPs, and for each EIP it selects the optimal 
split. Finally, (EIProot, nroot) is picked as the root node, 
where the EIProot minimizes the CPI variance over all the 
EIPs and nroot is the corresponding split value. Intuitively, 
the algorithm chooses an EIP that most closely tracks the 
CPI variance as the root node of the tree.  

After the initial split, all the EIPVs are separated 
into two groups depending on the number of times EIProot 
is executed in each vector. The algorithm then recursively 
splits each of the sub population of EIPVs to form a 
binary regression tree.  
4.2 Regression Tree Example 

In this section we use data from Table 1 as input to a 
hypothetical example to explain the regression tree 
building process. In this example the program has 3 
unique EIPs (EIP0, EIP1, and EIP2) and is divided into 
eight execution intervals. The EIPV for each interval 
shows the number of times each unique EIP occurs during 
that interval (in Millions); the CPI during that interval is 
also shown in Table 1. 

 CPI EIP0 EIP1 EIP2 
EIPV0 1.0 100 0 0 
EIPV1 1.1 80 0 20 
EIPV2 2.6 0 20 80 
EIPV3 0.6 80 20 0 
EIPV4 2.0 20 20 60 
EIPV5 2.1 20 20 60 
EIPV6 2.5 20 0 80 
EIPV7 0.7 80 20 0 

Table 1 Example EIPV Table 

Figure 1 Example Regression Tree with 4 Chambers 
The regression tree algorithm first selects EIP0 as a 

tentative candidate for the root node and forms a 
corresponding tuple collection, tupEIP0. Each tuple contains 
the number of times EIP0 is executed in an interval along 
with the CPI in that interval. The tupEIP0 is then split into 
two, tup_lEIP0 and tup_rEIP0, so as to minimize the CPI 
variance. In this example an execution count of 20 is used 
for the split and hence the tup_lEIP0 contains EIPV2, 
EIPV4, EIPV5, and EIPV6; and tup_rEIP0 contains EIPV0, 
EIPV1, EIPV3, and EIPV7. Similarly, EIP1 and EIP2 are 

next considered as potential choices for the root node. For 
each choice of root node the reduction in CPI variance is 
noted. After comparing the CPI variance reduction of the 
three EIPs, EIP0 is selected as the root node, since that 
split reduces CPI variance more than splitting based on 
any other EIP. 

The root node is marked as (EIP0, 20). All EIPVs in 
which EIP0 is executed for no more than 20 times are 
placed in left subtree, and those EIPVs in which EIP0 is 
executed for more than 20 times are placed in the right 
subtree. Hence, EIPV2, EIPV4, EIPV5, and EIPV6 are 
placed in the left subtree; and EIPV0, EIPV1, EIPV3, and 
EIPV7 are placed in the right subtree. The regression tree 
is further split recursively. Both the left subtree and the 
right subtree are divided into two nodes to form a 
regression tree with 4 leaf nodes, as shown in Figure 1. 
4.3 Managing Complexity  

Note that it is possible to keep subdividing the 
EIPVs with walls until each chamber contains just one 
data point (one EIPV). Obviously, in such an extreme case 
the intra-chamber CPI variance goes to zero when there is 
only one CPI associated with an EIPV. For practical 
considerations, however, it is necessary to compromise 
between the precision of the model, i.e. the overall 
homogeneity of chambers, and the complexity of the tree, 
i.e. the number of final chambers. In our model we chose 
to restrict the maximum number of chambers to be no 
more than 50 (1<=k<=50), since for most of our 
applications going beyond 50 chambers does not reduce 
the per chamber CPI variance. For each k, we seek the 
optimal tree T_k that has k chambers.  

For each chamber C of a tree T_k, we compute the 
mean CPI value vC from the CPI value associated with 
each EIPV in that chamber. Finally, we use cross-
validation [6], a well known technique to determine tree 
complexity, to select a k value that strikes the balance 
between precision and complexity. An intuitive and 
simplified description of this technique is presented now.  
4.4 Cross Validation Algorithm 

The cross validation algorithm divides the input data 
set, (EIPV, CPI), into 10 parts. A regression tree is built 
using nine out of the ten parts (i.e. 90% of the input data) 
and the remaining 10% of the data set (EIPV, CPI) is 
subsequently inserted in the chambers of the regression 
tree. For each EIPV inserted, its estimated CPI is the mean 
CPI of the chamber (vC) where it is inserted. The sum of 
the squared difference between estimated CPI and the 
EIPV’s computed instantaneous CPI is called the cross 
validation error. Intuitively, cross validation error gives us 
an upper bound on the predictability of CPI using EIPs.  

For the cross-validation process, let us first start 
with k=1, the number of chambers in the tree equals 1. We 
then repeat the following process for all k (1<=k<=50). 
The input data set (D), namely (EIPV, CPI) pairs, is 
randomly subdivided into 10 equal parts Dj (j=1,…,10).  

EIP1 <= 0 
EIP2 > 60 

EIP0, 20 

EIP2, 60 EIP1, 0 

EIPV4, 2.0 
EIPV5, 2.1 

EIPV2, 2.6 
EIPV6, 2.5 

EIPV0, 1.0 
EIPV1, 1.1 

EIPV3, 0.6
EIPV7, 0.7

EIP1 > 0 

EIP0 > 20 EIP0<=20 

4 Chambers (k=4) 

EIP2 <= 60 
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We remove the jth part Dj (10% of the EIPVs and their 
associated CPI values) from the data set and use the 
remaining 90% of the data to build a regression tree Tk, as 
described in Section 4.1. We repeatedly remove one of the 
10 parts and build a regression tree using the remaining 
nine parts. Using all possible combinations of nine out of 
the 10 parts, 10 different regression trees are built. Thus, 
any tree Tk is built using only 90% of the input data and 
has k chambers (leaf nodes). 

For a tree Tk, we first choose one EIPV (say p) from 
the 10% data that was left out from building that tree, and 
place p in the most appropriate chamber in that tree. For 
instance, if the root node of Tk is marked (EIProot, nroot) we 
look for the number of times EIProot is executed in p. 
Remember that each EIPV contains one execution count 
entry for each unique EIP in the program, even if the count 
is zero. If the value is less than or equal to nroot we traverse 
the left node of the tree, otherwise we visit the right node. 
We recursively traverse the tree until we reach the leaf 
chamber, Cp, where p is placed. Then the CPI for p is 
predicted as vCp, the mean CPI of that chamber computed 
from the 90% of the data as described before. The squared 
difference between the computed instantaneous CPI 
associated with p and the predicted CPI is Ek,p = (CPI(p)-
vCp)2. We then repeatedly compute the squared difference 
for each EIPV in the remaining 10% of the data. We 
compute the sum of all the squared differences to form Ek,i  
(i=1,…,10) for a given regression tree Tk. We compute Ek,i  
corresponding to each of the 10 regression trees that were 
built using 90% of the data.  

The above procedure is repeated for each of the ten 
trees, for a given k. The partial sums of errors for the 10 
trees are summed together and averaged over 10, the 
number of trees,  

10

10

1
,∑

== i
ik

k

E
E  

 
The relative error is then considered for all k 

(number of leaf nodes) as 

E
ERE k

k =  

where E is the variance of the total CPI population. The 
asymptotic value for the relative cross validation error 
REk=∞ gives us an upper bound on predicting CPI using 
just EIPs. In this paper, we consider REkopt to be a good 
approximation of REk=∞, if the relative error REkopt is 
within 0.5% of REk=∞. Note that in this framework, we 
have repeatedly attempted to predict the behavior in CPI 
space of 10% of our data by using the behavior in the 
remaining 90% of the data, which is commonly considered 
as a good approximation of the tradeoff between precision 
and model complexity. 

4.5 Interpreting Regression Tree Results 
Before using the regression tree methodology, it is 

important to first look at the CPI variance of the sampled 
data. If the variance (E) is small to begin with, indicating a 
uniform CPI throughout execution, there is often no need 
to build elaborate regression functions for predicting CPI. 
A simple average is often enough; note that a regression 
tree with a single leaf and no split corresponds to the 
simple average estimator. On the other hand, if variance is 
sufficiently large, then the value of REk=∞ provides many 
useful insights into the program behavior. It represents the 
amount of information the EIPVs provide for predicting 
CPI. For instance, REk=∞=0.15 means that 85% (1-REk=∞) 
of the CPI variance can be explained by the EIPVs. 
Furthermore, if the small REk=∞ is reached with a small 
number of chambers, say kopt<20, then the workload 
behavior exhibits a small number of dominant phases. On 
the other hand, when REk=∞~1 then EIPVs have no 
relationship with CPI, or CPI cannot be predicted using 
only EIPVs. Finally, irrespective of the value REk=∞, if this 
error limit is reached only with a large number of 
chambers, then it indicates that the relationship between 
EIPVs and CPI is not regulated by few dominant phases, 
and hence, it is unlikely that using a few samples will 
accurately represent the whole program behavior. 

A comprehensive treatment of the regression tree 
technique is presented in [6]. In our implementation we 
use rpart from the R programming environment [7]. 
4.6 Regression Tree versus K-means Clustering 

It is interesting to note the similarities and 
differences of regression trees with previously proposed 
clustering algorithms. In previous approaches EIPVs (or 
an equivalent control flow representation, e.g. BBVs [27]) 
are subdivided into “clusters” using K-means clustering 
algorithm. The fundamental difference between regression 
and K-means clustering lies in the amount of information 
used to compute the phases or clusters. With K-means 
clustering, the phases are determined solely using the 
EIPVs; in particular, CPI values are not used in 
determining the clusters. Thus, in K-means, it is assumed, 
rather than proven, that the points belonging to the same 
cluster have very similar CPI. 

Since CPI does not drive the clustering process in 
K-means, it is possible that some clusters have high CPI 
variance although the EIPVs in the cluster are similar. To 
overcome this problem, recently stratified sampling [25] 
has been proposed, which uses more than one sample from 
those phases that have high CPI variance. Although 
stratified sampling does reduce the CPI variance, the 
fundamental assumption in k-means remains the same:  
CPI can be accurately predicted using just EIPVs.  

 When using regression trees, the “clustering” (i.e. 
the partitioning of the EIPV space into chambers) is driven 
by CPI variations between EIPV points being grouped into 
the same chamber. Therefore, by construction, the EIPVs 
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that ended up in the same chamber will have similar CPI 
values. In other words, the difference between the two 
approaches is that, in regression trees, CPI optimally 
drives the subdivision of EIPVs into chambers and, hence, 
can show the inherent limitation in predicting CPI with 
just EIPVs. The grouping of EIPVs into chambers in the 
regression tree is conceptually similar to grouping EIPVs 
into K-means clusters. 

In order to quantify these differences, we compare 
the regression tree clustering to the K-means clustering for 
all of our workloads. We choose k-values independently 
from both schemes, where the k value is less than 50 and 
the performance predictability is minimized for each 
algorithm respectively. On average, the regression trees 
improve CPI predictability by 80% compared to K-means. 
Even though they both are clustered on EIP execution 
behavior, the lack of CPI information may hamper the 
performance of the K-means algorithm.  The major focus 
of this research is not to compare regression trees to K-
means, and hence the rest of this paper demonstrates the 
correlation between code flow and performance 
predictability. 

5. ODB-C and SPECjAppServer  

This section presents the results from regression tree 
analysis of transaction intensive server workloads ODB-C 
and SjAS. We show how the relative error (REk) for a 
regression tree Tk changes with increasing k, the number 
of chambers in the tree, and analyze the reasons for the 
observed behavior.  

Figure 2 shows how relative error changes by 
increasing the number of chambers (k) in the regression 
trees for ODB-C and SjAS. For ODB-C, as the number of 
chambers in the regression tree increases, the relative cross 
validation error increases above one. For SjAS, as the 
number of chambers in the regression tree increases, the 
relative error remains flat at approximately 0.96, and the 
minimum error, REkopt,  is about 0.8 when k=3. In ODB-C 
EIPVs are entirely inadequate to explain CPI variance, 
while only 20% of the CPI variance in SjAS can be 
explained by EIPVs. Note that the regression trees are 
built using 90% of the data and the error is computed 
using the remaining 10% of the data. If the relationship 
between EIPVs and CPI is entirely random, any “optimal 
split” decision made on 90% of the data may not 
generalize when using the remaining 10% of the data. This 
can lead in some cases to more complex models 
performing worse than simple ones (RE>1)!  

To understand the reasons for large relative errors in 
Figure 2, we present the EIP spread with time and CPI 
variations with time, in Figure 3, for a 60 second interval 
during the steady state execution of ODB-C and SjAS. 
Compared to SPEC CPU2K benchmarks, ODB-C and 
SjAS execute a large number of unique instructions that 
are rather uniformly distributed. For instance, the number 

of unique EIP samples collected by VTune (Y-axis in EIP 
spread graphs) in the 60 second interval is 23,891 in ODB-
C and 31,478 in SjAS.  On the other hand, the mcf 
benchmark from CPU2K suite has only 646 unique EIP 
samples in a 200 second interval. Furthermore, the CPI 
variance is only 0.01 for ODB-C and even for SjAS it is 
0.03. The small CPI variance for the large number of 
unique EIPs indicates that the performance is independent 
of the code. 
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Figure 2  Relative Error Trend for ODB-C & SjAS 

 

 
(a) ODB-C: EIP (top), CPI (bottom) 

 
(b) SjAS: EIP (top), CPI (bottom) 

Figure 3 EIP & CPI Spread of (a) ODB-C, and (b) SjAS  
5.1 CPI  Breakdown   

To explain why CPI is independent of the code, we 
breakdown the instantaneous CPI into four components:  
time to execute instructions (WORK), I-cache and branch 
misprediction stalls (FE), D-cache miss stalls mostly due 
to L3 misses (EXE), and all the remaining backend stalls 
(OTHER). The embedded counters in an Intel Itanium 2 
processor can measure the stall times and hence the CPI 
breakdown presented here is precise. Figure 4 and Figure 
5 show the CPI breakdown for ODB-C and SjAS, 
respectively. In ODB-C, L3 cache miss stalls are 
responsible for more than 50% of the total CPI through out 
the entire execution interval. In SjAS also, L3 cache miss 
stalls account for 30-40% of the total CPI. Since L3 misses 
occur frequently and uniformly throughout the execution, 
CPI variations caused by other microarchitectural 

ODB-C 

SjAS 
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bottlenecks are overwhelmed by the large L3 miss latency 
- 160 cycles in the Itanium 2 processor. This uniform CPI 
behavior leads us to conclude that random sampling is an 
effective mechanism to approximate CPI behavior. 
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Figure 4 CPI Breakdown for ODB-C 
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Figure 5 CPI Breakdown for SjAS 

5.2 Threading Behavior 
Another possible reason why the regression tree 

analysis shows the lack of relationship between EIPVs and 
CPI is the presence of multiple threads in ODB-C and 
SjAS. Server workloads typically have many separate 
lightweight and heavyweight threads of execution in order 
to hide large network and disk I/O latencies. Compared to 
SPEC CPU2K benchmarks, server workloads spend a 
significant portion of their execution time in the OS 
performing thread scheduling, managing disk I/O (in the 
case of ODB-C) and network I/O (in the case of SjAS). 
For instance, SPEC CPU2K benchmarks spend less than 
1% of the execution time in the OS, while ODB-C spends 
nearly 15% of the execution time in the OS. Because of 
frequent disk or network I/O, threads voluntarily yield 
CPU, and there is frequent context switching as a result.  
ODB-C executes about 2600 context switches per second, 
while SjAS executes about 5000 context switches per 
second. In contrast, SPEC CPU2K benchmarks execute 
about 25 context switches per second. 

We sampled the entire system when using the 
VTune based sampling process to collect the data. Hence 
the input data used in regression tree analysis contains the 
EIP samples from multiple threads, and even a single 
EIPV may have EIPs from many threads. It is possible that 
although there is a relationship between EIPs and CPI 
within each thread, this relationship may be hidden when 
multiple threads interact with each other and thus no phase 
behavior will be apparent. On the other hand, thread 
switching may reinforce the relationship if multiple 
threads are executing the same code.   

The VTune sampling process tags each collected 
sample with a thread/process number that generated the 
sample.  To approximate the impact of thread switching on 
phase behavior, we first separate the samples on a per 
thread basis, creating the EIPVs and the corresponding 
CPIs for each thread. We then use per thread EIPV and 
CPI data as input to the regression tree analysis.  Figure 6 
and Figure 7 shows the relative error with and without 
thread separation for ODB-C and SjAS, respectively. The 
thread-separated regression tree result is labeled thread 
and the original regression tree is labeled nothread.  The 
relative error does decrease when threads are separated, 
indicating that per thread EIPVs can predict CPI better, 
although minimally.  For instance, the relative error dips 
below one for ODB-C and below 0.8 for SjAS.  However, 
for both of these workloads, even after separating threads 
EIPVs have little relationship with CPI. We conclude that 
for ODB-C and SjAS the large code size coupled with the 
dominating L3 cache misses reduces CPI predictability 
with just EIPVs. 
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Figure 6 ODB-C Relative Error With & Without Threads 
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Figure 7 SjAS Relative Error With & Without Threads 

6. ODB-H  

Although we analyzed all 22 queries in ODB-H, in 
this section we focus on two categories of behaviors that 
are seen across all the ODB-H queries. The two categories 
are: queries with strong EIP-CPI relationship and queries 
with weak EIP-CPI relationship.  
6.1 Strong EIP-CPI relationship 

We use the query Q13 to represent the class of 
ODB-H queries where EIPVs can explain more than 85% 
of the CPI variations. This query determines the 
distribution of customers by the number of orders they 
have made. It counts and reports how many customers 
have no orders, how many have 1, 2, 3, etc. The three 
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dominant operations in this query are scan, join and sort of 
two large tables (about 7 GB of data). In other words, Q13 
executes a small segment of code repeatedly over a large 
amount of data.  

Figure 8 shows how relative error changes by 
increasing the number of chambers (k) in the regression 
tree for Q13. Unlike ODB-C and SjAS, as the number of 
chambers in the regression tree increases, the relative cross 
validation error decreases rapidly and the asymptotic value 
reaches 0.15 when kopt=9.  Hence 85% of the CPI variance 
in Q13 can be explained by EIPVs. Furthermore, we only 
need 9 chambers to optimally capture the CPI variance 
with EIPVs.  

Q13 executes for 538 seconds, while the number of 
unique EIPs is only 4129 (Y-axis on Figure 9 (top)). The 
loopy execution behavior of Q13 results in a good CPI 
prediction using EIPVs. Figure 9 shows the EIP and CPI 
plots. From the visual inspection of these graphs one can 
see the strong EIP and CPI relationship. 

It is worth mentioning that while ODB-H is also 
multithreaded there are significant differences between 
ODB-H threads and ODB-C threads. For instance, the 
context switching rate in ODB-H is less than that of ODB-
C. Furthermore, in ODB-H, queries are broken into basic 
database operations, such as scan, sort, and join. Each 
query may execute multiple instances of the same 
operation and one thread is assigned per each instance. 
Hence, several identical threads may be operating 
concurrently, and therefore thread switching does not 
appear to be as detrimental. 
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Figure 8 Relative Error Trend for Q13 

 

 
Figure 9 EIP(top) & CPI(bottom) Spread for Q13 

6.2 Weak EIP-CPI relationship  
The second category of queries demonstrates weak 

EIP-CPI relationship. We highlight the regression tree 
analysis for one such query, Q18, in Figure 10. The 
relative error goes above 1 and stays relatively flat at 
about 1.1 with increasing k. Hence, using EIPVs can not 
explain the CPI behavior in Q18.  

This query finds a list of the top 100 customers who 
have ever placed large quantity orders, which is 
functionally similar to Q13. Both queries involve scan, 
join and sort operations on two identical tables. However, 
the Oracle query optimizer uses a sequential scan (access 
every row in a table) in Q13, and an index scan operation 
in Q18 where rows in a large table are accessed using a B-
tree index. It is well known [31] that index based table 
scans can have a highly unpredictable behavior due to the 
randomness of the tree traversal. Hence, even though Q18 
repeatedly executes a small code segment, the CPI varies 
significantly. 
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Figure 10 Relative Error Trend for Q18 

 
Figure 11 EIP(top) & CPI(bottom) Spread for Q18 
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Figure 12: ODB-H: Q18 CPI Breakdown 

Figure 11 shows the EIP and CPI variations with 
time for Q18. For the purpose of illustration, a dotted box 
is drawn around the EIP spread and the corresponding CPI 
variation graphs. Although the EIP spread shows that the 
same set of EIPs are accessed over time, the corresponding 
CPI graph shows significant variance, resulting in a poor 
CPI prediction using just EIPVs. While the CPI curves 
(Figure 11(bottom)) may indicate some apparent phases it 
is important to note that our approach is only trying to find 
correlations between EIPVs and CPI. Hence, even though 
there may be phases in CPI if they are not correlated with 
EIPVs the relative error will be high.  

As further evidence, we present the CPI breakdown 
of Q18 in Figure 12. The graph shows that there is no 
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single microarchitectural bottleneck that dominates the 
CPI. Furthermore, the bottlenecks to performance change 
with time. For instance, within a short execution interval 
L3 cache miss stalls (EXE) dominate for a brief time while 
at other times front end stalls (due to branch mispredicts 
and I-cache misses) can replace L3 cache miss stalls as the 
primary bottleneck to performance. 

7. Quadrant Classification of Benchmarks 

Based on the results and analysis presented in 
Sections 5 and 6 we propose using CPI predictability in 
conjunction with CPI variance as the appropriate way to 
characterize the phase behavior of a benchmark. Figure 13 
shows a conceptual two dimensional space. The X-
dimension is the CPI variance and the Y-dimension is the 
relative error in predicting CPI with EIPVs, i.e. CPI 
predictability. The X-axis indicates the degree of CPI 
variance, with low variance to the left and high variance to 
the right. The Y-axis indicates the degree of predictable 
phase behavior based on the value of the relative error. In 
this paper we chose a CPI variance threshold of 0.01 for 
differentiating two regions along the X-dimension. We use 
a relative error of 0.15 as the threshold for differentiating 
the two regions along the Y-dimension. Using these two 
thresholds, we can identify four quadrants of workload 
behaviors as shown in Figure 13.  

Benchmarks in Q-I have insignificant CPI variance 
and exhibit limited phase behavior, where CPI can not be 
explained using EIPVs. A Q-II benchmark has low CPI 
variance but still exhibits strong phase behavior, so even 
the low CPI variance can be explained using EIPVs. 
Similarly, benchmarks in Q-III and Q-IV both have high 
CPI variance, but their phase behavior ranges from weak 
to strong. 

Table 2 shows the quadrant classification of all the 
SPEC CPU2K benchmarks, ODB-H queries, ODB-C and 
SjAS workloads. Surprisingly, 13 of the 26 SPEC 
benchmarks are categorized in Q-I along with ODB-C, 
where CPI variance can not be explained using EIPVs. 
The CPI variances of these benchmarks are extremely low 
and, hence, EIPVs can not predict/differentiate such small 
variations in CPI. This result may seem to contradict 
previous research; however, Dhodapkar and Smith [11] 
compared three different phase detection techniques and 
showed that a simple conditional branch count based 
phase detection correlates 83% of the time with basic 
block vectors [25][27][28]. Our results show low CPI 
variance makes it fairly easy to predict CPI within a small 
error margin and, hence, all three phase detection methods 
are likely to be equally effective. In fact, our analysis 
shows that simple sampling techniques, such as uniform 
sampling [30] with a few samples, work well even for a 
complex workload like ODB-C when CPI variance is low.  

There are only five benchmarks in Q-II. These are 
the benchmarks where even subtle CPI changes are well 

captured by EIPVs and are excellent candidates for phase 
based trace sampling proposed in [25]. However, there is 
no clear advantage of using phase based trace sampling 
over uniform sampling for these workloads due to the 
insignificant CPI variance. 
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Figure 13 Quadrant-based Workload Characterization 

 
Bmark CPI var REkoptr Bmark CPI var REkoptr 
ODB-C 0.00 1.01 Q18 0.65 1.00 

twolf 0.00 1.00 SjAS 0.03 0.90 
crafty 0.00 0.88 gcc 0.04 0.50 
eon 0.00 0.80 vpr 0.07 0.40 
Q1 0.01 0.78 bzip2 0.02 0.33 

parser 0.01 0.71 gap 0.08 0.33 
mesa 0.00 0.63 lucas 0.09 0.26 

equake 0.00 0.61 vortex 0.03 0.24 
gzip 0.01 0.60 Q7 0.04 0.19 

galgel 0.00 0.54 perlbmk 0.02 0.18 
applu 0.00 0.42 Q5 0.03 0.18 
Q19 0.01 0.37 Q10 0.02 0.18 
Q3 0.01 0.36 Q15 0.03 0.18 

mgrid 0.00 0.35 Q9 0.02 0.17 
wupwise 0.00 0.35 Q4 0.02 0.16 

art 0.00 0.33    
sixtrack 0.00 0.30    

Q16 0.01 0.25    
Q17 0.01 0.15 Q22 0.04 0.15 

ammp 0.01 0.11 Q21 0.02 0.15 
Q2 0.01 0.09 Q13 0.02 0.15 

facerec 0.01 0.06 Q8 0.02 0.12 
Swim 0.01 0.04 Q20 0.03 0.12 

   Q14 0.08 0.09 
   apsi 0.03 0.09 
   fma3d 0.05 0.08 
   Q12 0.06 0.06 
   Q6 0.03 0.06 
   mcf 1.63 0.06 
   Q11 0.02 0.04 

Table 2 Benchmarks Classified into Quadrants  
 Q-III is an interesting quadrant. Seven of the SPEC 

CPU2K benchmarks, seven of the ODB-H queries, and 
SjAS are in Q-III, where CPI variance is high and the 
benchmarks have weak phase behavior. For instance, gcc 
and gap are known for their lack of phase behavior, and 
our classification concurs with these earlier findings, as 
these benchmarks are classified into Q-III. The regression 
tree analysis sheds new light that benchmarks such as gcc 
and gap are not just slightly more difficult to predict their 
CPI from control flow. Instead, the CPI of these 
benchmarks is determined by micro-architectural 
bottlenecks in the system (such as high branch 
misprediction rate in gcc) which may not correlate well 
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with EIPVs. Apart from CPU2K benchmarks, several 
ODB-H queries also inherently lack phase behavior. An 
interesting future research topic is to see if a much higher 
sampling rate of EIPs can capture the CPI variance.  

Benchmarks in Q-IV have a high CPI variance and 
strong phase behavior. Hence these benchmarks are ideal 
candidates for phase based trace sampling. 12 (nine ODB-
H queries and three SPEC) of the 49 benchmarks are in 
this quadrant.  Using just a few samples based on phase 
analysis can capture the CPI behavior without needing to 
use uniform sampling, which may unnecessarily require a 
large number of small samples. 

7.1 Classification Robustness 

The partitioning of the workloads into four 
quadrants is clearly influenced by the choice of the two 
thresholds for CPI variance and RE. Our choice of the two 
thresholds is based on the design constraints under which 
this research is conducted. Varying these thresholds can 
shift some of the benchmarks to adjacent quadrants. In any 
case, regardless of specific values chosen for the 
thresholds, the quadrant based classification helps to better 
understand the different behaviors of the various 
workloads, and provides a quantitative means for 
comparing different benchmarks.  

In order to show that the results presented in this 
paper are not significantly influenced by the in-order 
Itanium 2 processor, we analyzed EIP and CPI relationship 
on both a 2.3 GHz Intel Pentium 4 processor based system 
and a 2.0 GHz Intel Xeon processor based system. Due to 
the setup complexity of the server workloads, we only 
analyze a subset of the SPEC CPU2K benchmarks on 
these systems. Our results showed that CPI variance is 
higher on both systems when compared to the Itanium 2 
based system.  For benchmarks that have high cache miss 
rate, such as mcf, the CPI variance is the highest in the 
Pentium 4 based system which does not have a large L3 
cache.  Even with a larger CPI variance in the Pentium 4 
based systems, we found that overall, compared to Itanium 
2 based systems relative error is 30% better on Pentium 4 
and 7% worse on Xeon. Thus, we conclude that quadrant 
classification is not simply an artifact of our base machine. 
Instead it shows the inherent relationship between EIP and 
CPI in our workloads. 

In this work, we have fixed the EIPV size at 100 
million instructions. To evaluate the impact of this 
parameter, we performed our regression analysis with an 
EIPV size of both 50 million and 10 million instructions, 
keeping the VTune sampling frequency unchanged. 
Relative to 100 million instruction, on average the CPI 
variance goes up 7% and 29% for the 50 million and 10 
million respectively, corroborating prior research [30]. 
The Relative Errors were 13% and 14% higher for the 50 
million and 10 million, respectively.  As the size of the 
EIPV is reduced, both the CPI variance and relative error 
are increased, moving some of the Q-IV benchmarks into 

Q-III. We surmise that, when building EIPVs with fewer 
than 100 million instructions, it may be necessary to 
increase the sampling frequency to obtain enough EIP 
samples per EIPV. 

8. Related Work  

Database workloads have been the primary server 
benchmarks for most microarchitecture research on server 
processors. These benchmarks are analyzed using either 
simulation of a scaled down workload setup [9][26] or by 
monitoring a full scale system behavior using performance 
counters [8][20]. The results broadly show that database 
applications have large instruction and data memory 
footprints, suffer from frequent context switches, and have 
significant cache miss rates and branch mispredictions. 
These previously published results motivated our research 
to analyze the phase behavior of server workloads and to 
compare them with SPEC benchmarks. 

Researchers have proposed several techniques to 
detect and exploit phase behavior of programs 
[11][12][25][27][28][29]. Broadly, their results showed 
that an application’s EIP determines CPI, independent of 
the underlying machine configuration. However, they 
focused on analyzing the phase behavior of SPEC 
benchmarks while this paper focuses on server workloads. 
Most of the previous studies worked under the assumption 
that CPI can be accurately predicted from control flow; in 
this paper we present a methodology to find the theoretical 
upper bound on the accuracy of predicting the CPI using 
only EIPVs.  

Sherwood et al.[27][28] proposed phase-based 
sampling that simulates a small number of (about 10) code 
segments, each with 10-100 million instructions. They 
used the execution frequency of basic blocks to form basic 
block vectors (BBV) over consecutive segments of 100M 
instructions. The BBVs are then grouped into k clusters 
using k-means clustering technique. Perelman et al. [25] 
presented a further refinement that proposed using more 
than one sample from those clusters that have high CPI 
variance. To reduce fast-forwarding time during 
simulation they evaluated algorithms for picking 
simulation points earlier in a program's execution. The 
fundamental premise of their work is that program 
performance (CPI) strongly correlates with BBVs. Our 
results show that some SPEC benchmarks do exhibit such 
relationship, which corroborates with their results. 
However, we show that for server workloads and several 
of the SPEC benchmarks, EIPVs alone are inadequate to 
accurately predict CPI.  It is also important to note the 
BBVs are collected by tracking the execution of every 
basic block using full code profiling. Hence, it is possible 
that some of the information that was captured by 
sampling at a fine granularity may be lost in our VTune 
based sampling at one million instructions. It would be an 
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interesting future research topic to compare regression tree 
analysis using EIPVs and BBVs.  

Eeckhout et al. [13] used statistical modeling to 
efficiently explore the workload space in order to reduce 
simulation time. Their analysis is based on collecting 
several characteristics, such as instruction mix and cache 
misses, over the entire program execution and then using 
principal component analysis to determine a reduced set of 
orthogonal parameters. Using this analysis they infer 
which program input pairs have similar behavior and 
prune redundant pairs for design exploration. 

Wunderlich et al. [30] also used statistical 
approaches to reduce simulation time of SPEC 
benchmarks. Their strategy consists of taking numerous 
samples (50,000) of small size (1,000 instructions) at 
regular intervals during program execution. Their work 
presents a systematic way to compute the optimal 
frequency of sampling and the size of each sample that 
guarantees a specified error bound for the Instructions Per 
Cycle (IPC) estimate. We show that for some of the server 
workloads where the relationship between CPI and EIPVs 
is not strong, using statistical sampling is in fact a good 
way to improve simulation accuracy.  

Dhodapkar and Smith [11] also identified program 
phase changes and represented each phase by a working 
set signature. These working set signatures are stored in a 
history table to recognize repeating signatures, which are 
then removed from design space exploration. Sun et al. 
[29] used a modified working set signature to compute the 
entropy of SpecJBB and ECPerf.  

Duesterwald et al. [12]  proposed monitoring 
several embedded event counters in IBM Power 
processors to derive relationships between different 
performance attributes: IPC, branch mispredictions, and 
cache misses. They observed that these metrics exhibit 
periodicity, which can be exploited in the design of on-line 
table based history predictors. The goal of their study was 
to design accurate table based predictors for programs 
with large variability.  

9. Conclusions and Future Work 

Recent studies have shown that most SPEC CPU2K 
benchmarks exhibit strong phase behavior, and CPI can be 
predicted accurately by just observing the EIPVs. This 
paper focuses on complex server workloads and analyzes 
whether their CPI behavior can also be accurately 
predicted by EIPVs. To quantify how accurately EIPVs 
can predict CPI, this paper uses regression trees that can 
optimally subdivide the EIPV space into groups, such that 
the CPIs of all the EIPVs in that group have the 
theoretically smallest possible variance. 

This paper presents a thorough phase analysis using 
regression trees for three commercial workloads: ODB-C, 
ODB-H, and the SPECjAppServer (SjAS) benchmark. 
ODB-C and SjAS have a large code size, and L3 misses 

occur frequently and uniformly throughout the execution. 
The large L3 miss penalty overshadows stalls due to other 
microarchitectural bottlenecks. Hence, CPI is primarily 
determined by L3 misses and is independent of the EIPVs. 
On the other hand, several ODB-H queries exhibit strong 
phase behavior, where EIPVs can explain more than 85% 
of the CPI variance. These queries execute a small code 
segment repeatedly over a large data set and, hence, 
exhibit cyclic behavior across many different performance 
metrics. Interestingly, ODB-H query Q18 also executes 
small code segment repeatedly over a large data set, yet 
fails to exhibit phase behavior since the performance 
varies significantly with input data. We analyze thread 
interaction in server workloads to show that frequent 
thread switching has a relatively small impact on the CPI 
predictability with EIPVs. For workloads such as ODB-C 
and SjAS, the large code size coupled with the dominating 
L3 cache miss stall component precludes any possibility of 
predicting CPI with just EIPVs. 

We classify the benchmarks into four quadrants 
based on the CPI variance and predictability of CPI using 
EIPVs. We show that server workloads and, surprisingly, 
even CPU2K benchmarks, exhibit a wide range of phase 
behaviors. Previous phase analysis techniques produced 
good phase-based sampling results for many CPU2K 
benchmarks, partly because some of the CPU2K 
benchmarks (in Q-II and Q-IV) truly exhibit strong phase 
behavior. However, a significant number of CPU2K 
benchmarks (in Q-I) lack phase behavior, but appear to 
give good clustering results, mainly because their CPI 
variance is extremely small. For these benchmarks, even a 
few random samples can adequately capture CPI behavior. 
Our experimental results indicate that no single sampling 
technique can be broadly applied to a large class of 
applications. We propose using quadrant based 
classification to better understand the wide range of 
workload behaviors and select the best-suited sampling 
technique to accurately capture the program behavior for 
each workload.  

Our primary results presented are collected from 
Itanium-2 based systems.  Prior work [15] did an extensive 
comparative study of the behavior of ODB-C on a Quad 
Xeon and a Quad Itanium server.  Their results showed 
that 60% of the CPI can be attributed to L3 misses on both 
MP systems. They concluded that for benchmarks such as 
ODB-C (and ODB-H) that suffer large number of L3 
misses, the underlying ISA has minimal impact on overall 
behavior; only major system level features, such as a 
different processor interconnect and different bus design, 
can impact their behavior.  Therefore, we expect similar 
phase behavior of these complex workloads irrespective of 
the ISA.    

In this paper we focused primarily on the correlation 
between CPI and EIPs and used microarchitectural event 
counts only to analyze the observed correlations. CPI is 
just one of the performance metrics used by processor 
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designers to evaluate the impact of alternative design 
choices. Measuring the correlation between CPI and EIPs 
provides a simple unifying approach for classifying the 
benchmarks. However, our analysis highlights the inability 
of just using EIPs in predicting performance. It is 
interesting to study how code flow impacts non-CPI 
metrics, such as cache misses and branch mispredictions. 
One future study is to analyze complex interactions 
between code path, CPI and the underlying 
microarchitectural events.   

10. Acknowledgements 
This work benefited greatly from the valuable 

insights provided by John Shen. We would like to thank 
Brad Calder for providing detailed comments on this 
work.  

11. References 
[1] VTune: http://www.intel.com/software/products/vtune/. 
[2] TPC-H: http://www.tpc.org/tpch/default.asp 
[3] EcPerf: http://ecperf.theserverside.com/ecperf/ 
[4] SPECjAppServer: http://www.specbench.org/osg/jAppServer 

[5] J2EE: http://java.sun.com/j2ee/ 

[6] L. Breiman, J.H. Friedman, R.O. Olshen, and C.J. Stone. 
Classification and Regression Trees. Kluwer Publishers 1984.  

[7] RPART: http://www.r-project.org/ 
[8] A. Ailamaki, D. DeWitt, M. Hill, and D. Wood. DBMSs on a 

Modern Processor: Where Does Time Go? In Proceedings of the 
25th Intl. Conference on Very Large Data Bases, pages 266–277, 
September 1999. 

[9] L.A Barroso, K. Gharachorloo, and E. Bugnion. Memory System 
Characterization of Commercial Workloads. In Proceedings of the 
25th Intl. Symposium on Computer Architecture, pages 3–14, June 
1998. 

[10] P.T. Bickel and K.A. Doksum. Mathematical Statistics. Basic Ideas 
and Selected Topics. Vol I. Second Edition. Prentice Hall, 2001. 

[11] A. Dhodapkar and J.E. Smith. Managing Multi-Configuration 
Hardware via Dynamic Working Set Analysis. In Proceedings of 
the 29th Intl. Symposium on Computer Architecture, pages 233–
244, May 2002. 

[12] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and 
Predicting Program Behavior and its Variability. In Proceedings of 
the Intl. Conference on Parallel Architectures and Compilation 
Techniques, pages 220-231, September 2003. 

[13] L. Eeckhout, H. Vandierendonck, and K.D. Bosschere. Workload 
Design: Selecting Representative Program-Input Pairs. In 
Proceedings of the Intl. Conference on Parallel Architectures and 
Compilation Techniques, pages 83–94, September 2002. 

[14] M. Franklin, W.P. Alexander, R. Jauhari, A.M.G. Maynard, and 
B.R. Olszewski. Commercial Workload Performance in the IBM 
Power2 Risc System/6000 Processor. IBM J. of Research and 
Development, 38(5): 555–561, 1994. 

[15] R. Hankins, T. Diep, M. Annavaram, B. Hirano, H. Eri, H. 
Nueckel, and J.P. Shen. Scaling and Characterizing Database 
Workloads: Bridging the Gap between Research and Practice. In 
Proceedings of the 36th Annual Intl. Symposium on 
Microarchitecture, pages 151-162, December 2003.  

[16] J.A. Hartigan and M.A. Wong. Algorithm AS136: A k-means 
Clustering Algorithm. In Applied Statistics, vol 28, pages 100–108, 
1979. 

[17] T. Hastie, R. Tibshirani, and J. H. Friedman. The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction. 
Springer Series in Statistics, 2001.  

[18] M. D. Hill. Evaluating a $2M Commercial Server on a $2K PC and 
Related Challenges. In the Seventh Workshop on Computer 
Architecture Evaluation using Commercial Workloads, Feb 2004. 

[19] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An 
Introduction to Cluster Analysis. Wiley, New York, 1990. 

[20] K. Keeton, D.A. Patterson, Y.Q. He, R.C. Raphael, and W.E. 
Baker. Performance Characterization of a Quad Pentium Pro SMP 
Using OLTP Workloads. In Proceedings of the 25th Intl. 
Symposium on Computer Architecture, pages 15–26, June 1998. 

[21] A.J. KleinOsowski and D.J. Lilja. MinneSPEC: A New SPEC 
Benchmark Workload for Simulation-Based Computer Architecture 
Research. Computer Architecture Letters, 1, June 2002. 

[22] A. Y. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering: 
Analysis and an Algorithm. Advances in Neural Information 
Processing Systems 14, MIT Press, Pages 849-856, 2002. 

[23] S. Nussbaum and J.E. Smith. Modeling Superscalar Processors via 
Statistical Simulation. In Proceedings of the Intl. Conference on 
Parallel Architectures and Compilation Techniques, pages 15–24, 
September 2001. 

[24] D. Pelleg and A. Moore. X-means: Extending K-means with 
efficient estimation of number of clusters. In Proceedings of the 
17th Intl. Conference on Machine Learning, pages 727–734, June 
2000. 

[25] E. Perelman, G. Hamerly, and B. Calder. Picking Statistically Valid 
and Early Simulation Points. In Proceedings of the Intl. Conference 
on Parallel Architectures and Compilation Techniques, pages 244-
255, September 2003. 

[26] P. Ranganathan, K. Gharachorloo, S.V. Adve and L.A. Barroso. 
Performance of Database Workloads on Shared-Memory Systems 
with Out-of-Order Processors. In Proceedings of the 8th Intl. 
Conference on Architectural Support for Programming Languages 
and Operating Systems, pages 307–318, October 1998. 

[27] T. Sherwood, E. Perelman, and B. Calder. Basic Block Distribution 
Analysis to Find Periodic Behavior and Simulation Points in 
Applications. In Proceedings of the Intl. Conference on Parallel 
Architectures and Compilation Techniques, pages 3–14, September 
2001. 

[28] T. Sherwood, S. Sair, and B. Calder. Phase Tracking and 
Prediction. In Proceedings of the 30th Intl. Symposium on 
Computer Architecture, pages 336–347, June 2003. 

[29] M. Sun, J.E. Daly, H. Wang and J.P. Shen. Entropy-based 
Characterization of Program Phase Behaviors. In the Seventh 
Workshop on Computer Architecture Evaluation using Commercial 
Workloads, Feb 2004. 

[30] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe. 
SMARTS: Accelerating Microarchitecture Simulation via Rigorous 
Statistical Sampling. In Proceedings of the 30th Intl. Symposium on 
Computer Architecture, pages 84–95, June 2003. 

[31] S. Chen, P.B. Gibbons and T.C. Mowry. Improving index 
performance through prefetching. In Proceedings of the 2001 ACM 
SIGMOD Intl. conference on Management of data, pages 235-246, 
May 2001. 

[32] B. Davies, J. Bouguet, M. Polito, and M. Annavaram. iPART : An 
Automated Phase Analysis and Recognition Tool. Technical Report 
IR-TR-2004-1-iPART, Intel Corporation, February 2004. 
ftp://download.intel.com/research/library/IR-TR-2004-1-iPART.pdf 

Proceedings of the 37th International Symposium on Microarchitecture (MICRO-37 2004) 
1072-4451/04 $20.00 © 2004 IEEE 


