Making the Right Hand Turn to Power Efficient Computing

Justin Rattner
Intel Fellow and Director
Microprocessor Research Labs
Intel Corporation

www.intel.com/labs
Outline

- Technology scaling
- Types of efficiency
- Making the right hand turn
Historic Perspective

- **Size**
 - V Tubes
 - Bipolar
 - NMOS
 - CMOS

- **Gate Delay**
 - V Tubes
 - Bipolar
 - NMOS
 - CMOS

- **Energy/Transition**
 - V Tubes
 - Bipolar
 - NMOS
 - CMOS

Scaling will continue

V Tubes \Rightarrow Bipolar
Bipolar \Rightarrow NMOS
NMOS \Rightarrow CMOS
CMOS \Rightarrow ?
Technology scaling is a great thing.

<table>
<thead>
<tr>
<th>X & Y Dimensions scale down by 30%</th>
<th>Doubles transistor density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z-Oxide thickness scales down</td>
<td>Faster transistor, higher performance</td>
</tr>
<tr>
<td>Vcc & Vt scaling</td>
<td>Lower active power</td>
</tr>
</tbody>
</table>
Supply Voltage Scaling

Supply voltage scaling has slowed.
Active Power Projection

Power will limit transistor integration

Assumptions:
- 15% Vdd scaling
- 50% Freq scaling (Per generation)
Sub-threshold Leakage

MOS Transistor Characteristics

Transistors will be *dimmers*, not *switches*
Excessive sub-threshold leakage power

Assumptions:
- 15% Vdd scaling
- 5X Ioff scaling
(Per generation)
Variations in P, V, and T

- **Process**
 - Die-to-die variation
 - Within-die variation
 - Static for each die

- **Voltage**
 - Chip activity change
 - Current delivery RLC
 - Dynamic: ns to 10-100us
 - Within-die variation

- **Temperature**
 - Activity & ambient change
 - Dynamic: 100-1000us
 - Within-die variation
Impact of Critical Paths

Impact of transistor parameter variations:
- Wide distribution of circuit frequency
- Lower mean freq with # of critical paths
- Encourages more localized, clustered designs
Tough Platform Demands

- Shrinking volume
- Reduced Noise
- Yet, Higher Performance

At Odds

- Reduced thermal budget
- Higher heat sink volume
- Higher air flow rate
BOM Cost Squeeze

![Graph showing desktop PC ASP with Performance and Value axes.](graphic)

- **Source:** Dataquest Personal Computers

Budget for power and cooling is shrinking

- **$2000 PC cost ('97)**

Desktop PC ASP

- **1995:** $2200
- **1996:** $1800
- **1997:** $1500
- **1998:** $1400
- **1999:** $1300
- **2000:** $1200

Source: Dataquest Personal Computers
Data Centers: Rack Mount Limits

Wasted space and higher cost in future

Power (Watts)

2002 2006

Network Equipment (~28%)
Servers & Storage (~15%)
Data Center Cooling Capability (~8%)
75-100 W/sq. ft
150-200 W/sq. ft

Rack Utilization

4X Cost
Outline

- Technology scaling
- Looking at efficiency
- Making a right hand turn
Power Efficiency

In the same process technology, compare:
- Scalar ⇒ Super-scalar
- Dynamic
- Deep pipe

2-3X Growth in area
~1.4X Growth in Integer Performance
~1.7X Growth in Total Performance
2-2.5X Growth in Power

2-2.5x growth in power / generation
Energy Efficiency

20-30% drop in energy efficiency / generation
Circuit Efficiency

Assumptions:
Activity: Static = 0.2,
Domino = 0.5
Clock consumes 40% of full chip power

Faster circuits contribute to power inefficiency.
Outline

• Technology scaling
• Types of efficiency
• Making a right hand turn
Power Comes First

Business as usual is not an option
Low Power and High Performance

- **Maximize battery life (fixed energy)**
 \[
 \text{Energy} = T_{\text{exec}} \times \text{Power} \approx (1/\text{Perf}) \times \text{Power}
 \]
 Increasing the Performance by 10% and the Power by 10% will end up with same battery life

- **Maximize performance within a given power envelope (Thermal constrains)**
 \[
 f \approx K \times V
 \]
 \[
 \text{Power} = \alpha \times C \times V^2 \times f \approx \alpha \times C \times f^3
 \]
 \[
 \Delta \text{Power}/\text{Power} = ((f+\Delta f)^3 - f^3)/f^3 \approx 3 \Delta f/f
 \]
 \[
 \text{Perf} = \text{IPC} \times f
 \]
 ➔ The right trade off between Performance and Power

\[\Delta \text{IPC} < 3 \Delta \text{Power is the metric}\]
“Less is More”

- Strive to accomplish the same task in less energy and less time
 - Higher performance at lower energy can always be traded with same performance at lower power

- Methodology works at all levels
 - Aggressive clock gating
 - Caching - dumb and smart
 - Better branch predictors
 - Smart work reduction
 - Prioritize useful over speculated work
 - Fixed functions
“Less is More” in Banias

- Improved branch prediction
 - Over 20% fewer branch mispredictions
- Dedicated stack manager
 - Over 5% uop reduction
- Uop fusion
 - Over 10% uop reduction
- Big L2 cache

Achieving Higher Performance at Lower Power
Reducing Active Power

Multiple Supply Voltages

Slow → Fast → Slow

Low Supply Voltage → High Supply Voltage

Throughput Oriented Design

Logic Block

Freq = 1
Vdd = 1
Throughput = 1

Logic Block

Freq = 0.5
Vdd = 0.5
Throughput = 1
Power = 0.25
Area = 2
Pwr Den = 0.125
Critical Scheduling

- Large schedule window (ILP)
- Exploit instruction criticality
 - Latency tolerant bypass
 - Limited critical resources

Data Mgmt System

Large Slow Schedule Window

Register File

Small Fast Schedule Window

Fast Cluster

Slow Cluster

50-60% non-critical

40-50% critical

www.intel.com/labs
Recycling Waste

- Wasted execution
 - Spec Exec vs Retired
 - ~30% in 1st gen OOO
 - ~60% in 2nd gen OOO
 - ~160% in future

- Leverage info from wasted execution

- Improve branch Prediction
 - 30% reduction in misprediction rate
 - 18% to 48% less wasted execution

- Can we reuse some of the execution result too?
Efficiency Through xMT

Thermals & power delivery designed for full HW utilization

Multithreading improves performance without impacting thermals & power delivery
Power Efficient Asymmetric Threads

- **Function Asymmetric Threading** (w/co-processor ISA)
 - Partition single thread into a main thread with special function threads
 - Special function unit is more area and power efficient

- **Performance Asymmetric Threading** (ISA compatible)
 - Serial code on heavy core
 - Parallel code on smaller and power efficient core
Chip Multi-Processing

- Multi-core, each core MT
- Shared cache and front side bus
- Each core has different Vdd & Freq
- Core re-cycling to spread hot spots
- Lower junction temperature
Summary

• Technology scaling can and will continue

• Challenges to power and energy efficiency are real but surmountable..

• ..through evolutionary approaches to circuits and microarchitecture