H3VP: History Based Highly Reliable Hybrid
Value Predictor

Kenichi Koizumi, Kei Hiraki, and Mary Inaba
The University of Tokyo, Tokyo, Japan
Email: {koiken,hiraki,mary}@is.s.u-tokyo.ac.jp

Abstract—We propose the history based highly reliable hy-
brid value predictor (H3VP) for the 1st Championship Value
Prediction. This is a hybrid predictor comprising three individ-
ual predictors, used for instructions whose results from either
constant, arithmetic, two-periodic, or three-periodic sequences.
Each predictor calculates a reliability value, and if this exceeds
a certain threshold, the corresponding predictor starts working
speculative predictions. The H3VP combines the speculations
from each predictor to determine the final prediction. During the
tests on the 135 traces provided for the competition, it achieved
a geometric mean of 3.582 instructions per cycle in the track
with the unlimited budgets, an improvement of about 11.56%
compared to the baseline without speculation.

I. INTRODUCTION

In computer architecture, the prediction of the results that
will be obtained from executing instructions is important
to deal with the dataflow dependencies that can cause a
calculation bottleneck. However, these predictions can also
result in a very significant penalty when the execution process
is rewound. The number of cycles required for execution
increases. Therefore, it is important that such speculative
predictors introduce as few mistakes as possible.

Value locality has been discussed in previous studies on
value prediction [1], [2]. [3] indicates that over 50% of
instructions produce the same results as results of the last
execution, and 80% will produce results matching one of their
previous sixteen. The values themselves are often obtained
from computation results that come close to them in time
series, but we must consider a broad range of value sequences
if we want to avoid mispredictions, consequently improving
speculation reliability.

Our proposed value predictor considers very long value
histories for each instruction corresponding to each program
counter. Our predictor reduces mispredictions by determining
the appropriate time to begin speculation based on these
histories. Storing the sequences in full would require a large
amount of storage; therefore, to save space, we characterize
them in terms of four sequence types and make speculations
for a particular instruction only if its values conform to one of
the following four sequences: (1) constant (one-periodic), (2)
arithmetic, (3) two-periodic, and (4) three-periodic sequences.
We also use a two-step confidence threshold as an additional
optimization technique. In addition, we use a hash function
to store the history data related to each program counter
(PC) value, dealing with hash collisions by adjusting the PC
value assigned to each entry in the History Table as execution

progresses, changing the state of the predictor’s state machine
when a collision occurs.

We also evaluate our predictor’s performance using the
traces provided for the 1st Championship Value Prediction
(CVP-1). We submitted it to all of the competition’s three
tracks, which had 8 kB, 32 kB, and unlimited storage budgets,
respectively.

II. PRELIMINARY OBSERVATIONS

Before designing our predictors, we first evaluated the
benchmark traces provided for the CVP-1. In a sample trace
comprising 1 million instructions, among with 87% were
ALU instructions and 11% were memory load instructions.
In addition, value sequences produced by executing the same
instruction had periodicities. Indeed, for 49% of the addresses,
the instructions always yielded the same values, whereas
others had periods of two or three, and a few had periods
of four or more. In addition, 92% of the instructions in the
trace had two kinds of PCs. These resulted in monotonically
increasing or decreasing value sequences. These observations
indicated that the most efficient approach would be to design
a predictor for instructions that output either constant value
or arithmetic sequences and that it would be effective to
assign the predictor a storage budget for predicting values with
periods of two or three, as much as the resources allowed.

III. HISTORY BASED HIGHLY RELIABLE HYBRID DATA
PREDICTOR

Figure 1 shows a block diagram of our History Based
Highly Reliable Hybrid Value Predictor (H3VP). This com-
bines the results of three different types of predictors that use a
common history table. Each of the three predictors uses its own
independent state machine, whose state is managed for each
entry in the history table. Figure 2 shows the state machine’s
transition diagram. Here, INIT means no instruction execution
information has been provided for that entry and that it has
not been assigned to any PC. PREPARE indicates that the
corresponding entry has yet to obtain sufficient information to
determine periodicity. VERIFY means that the corresponding
entry has obtained sufficient information, but the prediction
reliability has not reached the threshold value for that entry.
SPECULATE means that the prediction reliability has reached
the threshold and that the corresponding instruction is actively
speculating. FAILED represents the occurrence of a mispre-
diction. When this happens, the confidence threshold is raised

Execution

information
|
¥ History Based Highly Reliable
History Hybrid Value Predictor
table (H3VP)

(1) Arithmetic predictor

(2) Two-periodic predictor

(3) Three-periodic predictor

Speculation

command integrator
|

v
Speculation
command

Fig. 1. Overview of History Based Highly Reliable Hybrid Value Predictor
(H3VP)

for that entry, as discussed below. In addition, when a PC that
is different from the current PC for a given entry is executed
three times in succession, the machine discards the information
about the current PC and allocates the entry to the new PC.

Figure 3 shows a detailed block diagram of our H3VP.
The current PC is hashed to generate an index value with
a smaller bit width that is used to access the history table,
thereby storing data about this PC (except possibly in the
event of a hash collision, as discussed below). The history
table and predictor statuses are updated as follows: when the
target entry is in the INIT state, meaning that it is not yet
tied to any PC, it is immediately assigned to the current PC.
Every time the instruction at this address is executed, the result
(actual value) is stored in the entry’s HistO field. The values
produced by the previous execution of the instruction and the
one preceding that are stored in Histl and Hist2, respectively,
and the difference between the latest actual value and the value
previously stored in HistO is stored in Diff field. The predicted
value for the next execution of the instruction is calculated
based on the HistO, Histl, Hist2, and Diff fields. For example,
the arithmetic predictor outputs the value obtained by adding
the values in the HistO and Diff fields. If this prediction turns
out to be equal to the next actual value, the confidence counter
(Cnf) will be incremented.

The predictors decide the performance of speculation as
follows: for each of the three predictors (arithmetic, two-
periodic, three-periodic), speculation will only be active if the
confidence counter corresponding to the current instruction’s
PC exceeds the current confidence threshold. Regardless of
whether speculation is active, the entry’s status is set to
FAILED if the predicted and actual values differ. The inte-
gration block combines the speculation results from the three
individual predictors. Here, if at least one of the predictors
make a speculation, it is executed for that instruction. If the
prediction fails, the predictor responsible is updated accord-
ingly.

In the event of a hash collision, i.e., two different PCs
being assigned to the same table entry, the PC assignments

New PC

@ Different PC

Different
PC Different
PC Correct &
under threshold

Same PC

Same PC

Miss

Miss Correct &

over threshold
Different PC

Correct

Fig. 2. State machine for an individual value predictor.

are updated as follows: suppose that we have two differ-
ent program counters, PC; and PC'5, with the same hash
[hash(PCy) = hash(PC5)], and the corresponding table
entry has been assigned to PCY. If an instruction is executed
at address PCy, “PC5” is temporarily stored in that entry’s
NewPC field in the history table. Every time the instruction
at PCy is executed, the Cnt field is incremented. If its value
reaches the threshold of 3, the entry is reassigned to PC5, i.e.,
the PC field is changed to PC5. We used three as the threshold,
but there is room for optimization in determining this value.
However, if an instruction other than PC5 is executed before
the counter (Cnt) reaches three, the counter is reset to zero.

We used a two-step threshold for the confidence counters.
The 2nd confidence threshold is larger than the 1st confi-
dence threshold. A small threshold value (1st) was used as
long as no mispredictions occurred for the instruction at the
corresponding PC, but a larger threshold value (2nd) was
used for entries that caused even one prediction miss. Based
on the results of our preliminary evaluation, we set the 2nd
confidence threshold to 112, and the 1st threshold value to 24
for CVP-1’s 8kB track and 10 for its 32 kB and unlimited
tracks.

IV. PERFORMANCE

TABLE I
AVERAGE IPCs FOR OUR H3VP FOR CVP-1’S THREE TRACKS

8 kB \ 32 kB \ Unlimited
3211
3341 | 3378 |

No prediction
H3VP

3.582

In this section, we present our predictors’ performance
results. Table I shows the H3VP’s scores for CVP-1’s three
tracks, provided as the geometric means of the instructions
per cycle (IPC) over the 135 trace benchmarks provided.
Compared with the no-predictor baseline, it achieved a 4.06%,
5.19%, and 11.56% improvement in IPC for the tracks with

History table
64 64 64 64 64 64

Predictors

Arithmetic 2-periodic 3-periodic
4 8 4 8 4 8

2
PC | Hist0 | Histl | Hist2 | Diff [NewPC|Cnt

RS

A|A

Increment Cnt or

Update NewPC R fj\
J

Hist0

v Hist1

. Hist2

Actual value Diff

Predicted value

Status‘ Cnf] [Status|Cnf] Status‘ Cnf]
Threshold for Confidence
changing PC °ce cee e threshold
© 5y
Sy
) 4
® e
) 4
Set status to <
INIT

v
Speculate

Increment Cnf

Fig. 3. Block diagram for the History Based Highly Reliable Hybrid Value Predictor (H3VP), showing the bit widths of each field.

8 kB, 32 kB, and the unlimited budgets, respectively. Fig-
ure 4 shows the (geometric) mean IPC performance for the
individual predictors and H3VP for the 8 kB, 32 kB, and
unlimited tracks. Among individual predictors, the arithmetic
predictor’s IPC is the highest. Four individual predictors
have situations where each works effectively. For example,
the constant predictor conforms to instructions generating
an immediate value. The arithmetic predictor conforms to
instructions related to a control flow on an application (e.g., an
incremental counter of iterations). The two-periodic predictor
conforms to instructions processing tuples of data. The three-
periodic predictor conforms to instructions related to coor-
dinate calculation in applications handling three-dimensional
space. At this time, the arithmetic predictor conforming to
instructions related to flow control operations achieves high
performance in many traces. On the other hand, two- and
three-periodic predictors achieve high performance only in
applications including specific processes. Note that the value
sequences that can be predicted by the constant predictor are
a subset of those that can be predicted by the other three
predictors, namely, the arithmetic, two-periodic, and three-
periodic predictors. Such scores as the H3VP could not be
achieved by any of the predictors alone, but only by integrating
the output of the three individual predictors. Instructions that
can be predicted only with the two- or three-periodic predictors
do exist. However, many value sequences predictable by the
two- or three-periodic predictors can also be predicted with
the constant predictor. Therefore, in realistic microarchitecture
design, employment of the constant and arithmetic predictors
should be given priority based on the limitation of storage
budget.

Figure 6 shows the (geometric) mean IPC performance
for the H3VP for the 8 kB, 32 kB, and unlimited tracks,
where the x-axis indicates the large threshold value for the
confidence counter. The reason why we carefully selected the

W W W
A~

Average IPC
o

H3VP

W

Constant Arithmetic 2-periodic 3-periodic

E8 kB 32 kB ® Unlimited

Fig. 4. Average IPC scores for the individual predictors and H3VP, for the
unlimited track.

optimal value for the large threshold is that the performance
varies greatly depending on the value of this threshold. The
value of the confidence threshold to achieve the highest IPC
was 112 in all three tracks. If the threshold value is too
small, it is impossible to avoid failure of speculation due
to an appearance of an irregular value with a period length
longer than the threshold value. Then, the IPC performance
significantly decreases. On the other hand, if the threshold
value is too large, the beginning of speculation delays and the
predictor will miss out rewards for speculation success. Then,
the IPC performance gently decreases. The optimal confidence
threshold is determined by the ratio of the acceleration rewards
on speculation success to the rewinding penalty on speculation
failure. These factors depend on an architecture used for the
evaluation. In architectures with more significant rewinding
penalty, it is necessary to set the confidence threshold to a
larger value.

Figure 5 shows the IPC scores for CVP-1 trace, indicating
that the H3VP yielded an improvement for 125 of the traces. In
many srv traces, the H3VP achieves high IPC improvements,
while improvements for compute_fp traces is not good. One of
the reasons is that the arithmetic predictor in the H3VP sees
the sequences of 64-bit floating point values as integer se-

IPC improvements

ST IO NVOVAANUVOV—=FT-ODNLOANWNOW—FTI>ON
OO0 NDNNOODOODODO —~ —~— AN AN NN
—_ e e e

Fig. 5. IPC improvements yielded by the H3VP for each of the 135 CVP-1 traces. Trace number 1-45, 46-58, and 59-135 are compute_int, compute_fp,
and srv traces, respectively. The improvement of trace compute_int_7 (#8) is 633% and that of trace compute_int_34 (#33) is 169%.

338 3.59
337 3.58
o 336 3.57
=5
= 335 3.56
=)
5 334 /,_,\,J-\ 3.55
z
3.33 —8kB 3.54 _L
B
332 3.53
24 56 88 120 152 184 24 56 88 120 152 184

The 2nd confidence threshold The 2nd confidence threshold

Fig. 6. Average IPC scores for the H3VP for the 8 kB, 32 kB, and the
unlimited tracks. The 1st confidence threshold is set to 24 in the limited
tracks, and 10 in the unlimited track.

quences. If applications with many floating-point instructions
are targeted for the speculation such as compute_fp traces, an
arithmetic predictor with floating-point adders and subtractors
will be helpful as a way of increasing coverages.

V. STORAGE BUDGET

Now, we consider the storage consumed by each of our
individual predictors and for the H3VP overall. Table II shows
the single-entry storage consumption for the history table and
each predictor. The number of bits for fields of the history
table and predictor indicates actually required bit widths for
the members of the history table and predictor structure in
the submitted source code. Table III shows the composition,
entry size, and total storage consumed by the predictors
we submitted for each track. We deploy three predictors,
arithmetic, two-periodic, and three-periodic predictors, except
the constant predictor. In 8 kB, 32 kB, and the unlimited
tracks, the bit widths of hashed index value are 7, 9, and 20,
respectively. Since each predictor shares the history table, we
can reduce the required storage. The H3VP can change the
required storage amount only by increasing or decreasing the
number of entries.

VI. SUMMARY

In this paper, we proposed the History Based Highly
Reliable Hybrid Value Predictor (H3VP). We achieved IPC
improvements for the CVP-1 trace benchmarks by focusing on
speculation targets that can be characterized by arithmetic or

TABLE I
SINGLE-ENTRY STORAGE CONSUMPTION FOR THE HISTORY TABLE AND
EACH PREDICTOR.

Struct Pointer Storage [bits]
HistoryTable pc (PC) 64
history (Hist0-2) 64 x 3
diff (Diff) 64
newpc (NewPC) 64
newpc_cnt (counter for NewPC) 2
Total 386
MpyPredictor status (a portion of Status) 3
count (confidence counter) 8
failed (a portion of Status) 1
Total 12
Combined total (history table and three predictors) 422

TABLE III
STORAGE CONSUMPTION OF OUR SUBMISSIONS
Track History table size Storage
8 kB 128 54016 bits (6.59 kB)
32 kB 512 216064 bits (26.4 kB)
Unlimited 1048576 442499072 bits (52.8 MB)

periodic sequences. This approach can effectively suppress the
increase in storage consumption while allowing us to maintain
a large history table. When applied to the traces provided
for the competition, our predictor improved the IPC by an
average of 4.06%, 5,19%, and 11.56% for the 8 kB, 32 kB,
and unlimited traces, respectively, provided in the competition.

REFERENCES

[1] Y. Sazeides and J. E. Smith, “The Predictability of Data Values,” in
Proceedings of the 30th Annual ACM/IEEE International Symposium
on Microarchitecture, ser. MICRO 30. Washington, DC, USA:
IEEE Computer Society, 1997, pp. 248-258. [Online]. Available:
http://dl.acm.org/citation.cfm?id=266800.266824

[2] K. Wang and M. Franklin, “Highly Accurate Data Value Prediction
Using Hybrid Predictors,” in Proceedings of the 30th Annual ACM/IEEE
International Symposium on Microarchitecture, ser. MICRO 30.
Washington, DC, USA: IEEE Computer Society, 1997, pp. 281-290.
[Online]. Available: http://dl.acm.org/citation.cfm?id=266800.266827

[3] M. H. Lipasti, C. B. Wilkerson, and J. P. Shen, “Value Locality and Load
Value Prediction,” in Proceedings of the Seventh International Conference
on Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS VII. New York, NY, USA: ACM, 1996, pp.
138-147. [Online]. Available: http://doi.acm.org/10.1145/237090.237173

