
Context-Base Computational Value Prediction with Value Compression

 Yasuo Ishii

Arm
yasuo.ishii@arm.com

ABSTRACT

In this paper, we propose context-base computation value

prediction and aggressive cost reduction techniques exploiting

value locality. Context-base computational value prediction

tracks both base value and its stride for corresponding context

to cover context-dependent delta patterns. We also propose an

aggressive value compression scheme using value compression

cache. This cache tracks higher order bits of tracking values. To

maximize the storage efficiency, the data can be cached only

after the predicting value have a certain confidence.

We applied these proposals and dynamic coverage accuracy

control on TAGE inspired value predictor, CBC-VTAGE. With

8KB storage budget, our optimized CBC-VTAGE achieves 17.1%

speedup compared with processor without value prediction.

The geomean of IPC for distributed 135 traces is 3.76.

1 Introduction

Modern microprocessors employ prediction mechanisms

to improve their performance. However, some of known

predictors were not widely implemented in commercial

processors. A value predictor is one of such known

unimplemented predictors. Recently, some academic papers

[3,4] proposed new value prediction algorithms which

demonstrated high performance. However, these predictors

cannot improve performance if the detected value patterns rely

on both delta from last value and its context. Moreover, the

storage requirements of these value predictors are typically

significant compared with the other prediction mechanisms.

For example, VTAGE [3] requires a huge storage (e.g., 32KB) to

realize noticeable performance improvement.

In this paper, we propose (1) context-base computational

value prediction to correctly predictor certain value access

patterns which could not be caught by existing value predictors

and (2) aggressive data compression to reduce the storage

requirement, and (3) dynamic coverage / accuracy control to

maximize performance.

2 Context-Base Computational Value Prediction

Many existing value predictors capture value patterns by

correlating the previously appeared value patterns and the

corresponding context. One of representative value pattern is a

stride pattern (or delta pattern). To track the stride, value

predictors hold the last value and its stride from second oldest

value in the prediction storage. When the same instruction is

executed with same context, the summation of the last value

and the stride is produced as a predicted value. However, when

one instruction processes multiple different data streams,

existing value predictors cannot produce correct prediction

efficiently.

Fig 1 shows the representative example. In this example,

two different contexts (function A and function B) call one

shared function (function C). One instruction in function C is

the target of the value prediction. The produced value stream

(2, 3, 4, 6, 6, and 9) on this instruction cannot be predicted by

existing stride predictor because it correlates last value and

stride with corresponding PC. However, if the value predictor

can separate the stream for each caller function, the value

becomes predictable. When the function was called from

function A, the value pattern is 2, 4, and 6. If the function was

called by function B, the value pattern is 3, 6, and 9.

Non-PC localized stride (depend on context)

Function A

Call C

Function B

Call C

Function C

LD %r1, [M] Caller=A: 2, 4, 6,

Caller=B: 3, 6, 9, ...

Global : 2,3,4,6,6,9, ...

Fig 1: Context-base Computational Pattern

To predict this pattern, both the last value and the stride

should be correlated with its context. However, recently

proposed value predictors cannot track this type value patterns

efficiently. For example, D-VTAGE [4] cannot predict the value

pattern efficiently since D-VTAGE still uses PC indexed last

value table to provide base value. To predict this pattern, D-

VTAGE needs to allocate many entries to track each stride.

To support this value pattern, we propose context-base

computational value prediction. With this prediction algorithm,

one prediction entry tracks both the last value and its stride

with correlated context. When the value predictor detected the

same context, the value predictor starts to make prediction

based on tracking last value and the stride. This prediction

scheme was originally proposed as per-path stride, per-path

2

predictor [5]. However, the predictor capability was limited

because the predictor employs only one pattern table.

To realize efficient context-base computational predictor,

we applied this prediction algorithm on TAGE [6] inspired

predictor, Context-Base Computational Value predictor TAGE

(CBC-VTAGE). Fig 2 shows the overview of CBC-VTAGE. Like

the other TAGE inspired predictors [3,4], CBC-VTAGE has

multiple components correlated with different branch history

length. A prediction entry in each component is partially tagged

by hashed branch histories. The prediction entry can make a

prediction only when the tag matched against hash value

created from current context information. When multiple tags

are matched, the component correlated with the longest

branch history length can provide the final prediction. The

value prediction is created only when the confidence counter

of the longest matching entry is saturated.

The prediction part of each entry has two fields to track (1)

a last value and (2) a stride of corresponding context. When the

entry is updated, both the last value and the stride are updated.

Unlike the other TAGE inspired predictors, CBC-VTAGE can

update all tag matching entries if its strides are none-zero. This

is necessary to maintain the correct last predicted value for

each prediction entry while the other TAGE inspired predictors

update only the longest matching prediction entry.

=

Hash

PC, H[L1:0] PC, H[Ln:0]

Hash

Bank 0

=

Tag Pred

Bank 1

Hash

Hash

=

Bank N

0

Hash

PC

Hash

Xbar

Tag Pred
Tag Pred

Xbar

Hash

PC

Fig 2: Context-base Computational Value Predictor TAGE

The other differences of CBC-VTAGE are also show in Fig 2.

A CBC-VTAGE in this paper does not have tag less components.

Base components are also tagged. Moreover, the tag width of all

tables is same to support a bank interleaving mechanism [2] to

maximize the storage efficiency. Each hash value created from

the branch history is swapped based on the hashed PC. We also

apply an aggressive value compression scheme described in

next section to minimize the cost.

In most of existing value prediction papers, the predictor is

updated after commit and CVP-1 also follows this design. For

such a processor core, the computational value predictor needs

to maintain inflight information to reproduce speculative

value. Since one CBC-VTAGE prediction entry tracks both last

value and its stride. To reproduce the last value, the predictor

needs to track only the number of instructions accessing the

same prediction entry. If N inflight instruction used the entry,

the speculative last value can be calculated by ‘committed last

value + N * committed stride’. Unlike D-VTAGE, the speculative

information tracking mechanism doesn’t need to track the

speculative last value. This helps to mitigate the complexity and

the cost of existing computational value predictors.

3 Aggressive Data Compression for Value Predictor

3.1 Value Compression Cache

When processor produced the integer value, the values

tend to belong to subset of a certain value set (e.g., 0, 1, -1, …).

If the produced value is for an address, the produced values

tend to point a similar address ranges since one application

typically accesses to a small subset of huge virtual address

space. These facts indicate that higher order bits of predicted

values have some spatial locality. This means that multiple

values can share same higher order bits.

To exploit this locality, we introduced value compression

cache. This idea is basically derived from ITTAGE region cache

[2]. In this study, we implement 255-entry full associative

structure to compress higher order bits. For real hardware, 2-

way or 4-way skewed associative cache should realize similar

capability. To utilize this compression cache, each prediction

entry needs to track 8-bit pointer instead of tracking raw data.

When a prediction is created, the value predictor read this

cache by that pointer to produce higher order bits of predicted

value (Fig 3). The value compression cache entry tracks 54-bit

value in this study. The value compression cache can also

compress a stride value. When the stride value is compressed,

54-bit value tracked by the value compression cache is mapped

to lower 54-bit of compressed stride. Higher order bits of stride

value will be supplemented by sign extension. We also

implement one reserved entry (256th entry) to produce ‘0’ from

this table without consuming storage cost.

Value [53:0] + NRU

ID[7:0]

Last entry is always 0

#n

Value Compression Cache

Fig 3: Value Compression Cache

 3

3.2 Lazy Allocation for Value Compression Cache

The value compression cache exploits the spatial locality to

save storage cost. We also found that non-negligible number of

the allocated cache entries never be used for actual value

prediction since the corresponding prediction entry is evicted

before its confidence counter gets saturated.

For such entries, the confidence counters typically do not

exceed a half of its saturated value (‘3’ for 3-bit forward

probabilistic confidence counter) and only a few lower order

bits are enough to qualify the confidence of the corresponding

prediction entry. To exploit this locality, the allocation of value

compression cache is delayed until the confidence counter of

the corresponding value prediction entry reaches a certain

threshold. In this paper, the predictor starts to allocate value

compression cache entry only when the confidence counter

reaches ‘3’ for 3-bit confidence counter. The cache entry for

stride value is allocated when the confidence value turns to ‘4’

since full last value is necessary to calculate 54-bit stride value.

Before the confidence value reaches ‘4’, the value predictor

qualifies only lower 8-bit of predicting value.

Fig 4 shows the overview of the lazy allocation for 3-bit

forward probabilistic counter (FPC) [3]. When the prediction

entry is allocated, the confidence counter is initialized to zero.

When the correct prediction is qualified, the value is turned to

1. After confidence counter reaches 1, subsequent increment

can happen only when the correct prediction was identified

with the certain probability. When the counter turned to ‘3’, the

base value is allocated in the value compression cache. When

the value turns to ‘4’, the stride value is assigned on the value

compression cache if necessary. Before the confidence counter

reaches ‘4’, only 8-bit of predicted value is checked at update

timing since higher order bits might not be tracked by the

predictor. After the confidence counter reaches 4, full value can

be qualified. The predictor starts to make prediction after the

confidence value turns to ‘7’.

0 1 2 3

Value Compression
Cache Allocation for

Base Value

4 5 6 7

Start to make predictionValue Compression
Cache Allocation for

Stride Value

Check only lower 8-bit value

Check full 64-bit value

1 1/n 1/n 1/n

1/n 1/n 1/n

After allocation or
misprediction

Fig 4: Lazy Allocation on Forward Probabilistic Counter

3.3 Value Compression Cache Replacement

The replacement policy of the value compression cache is

CLOCK in this paper. Each entry has 1-bit NRU information and

the cache maintains one shared CLOCK pointer. When the cache

entry is replaced, the confidence counters using the victimized

entry are reset to a defined value (‘3’ for 3-bit confidence

counter in this study). In real hardware, this reset mechanism

might not be necessary since its performance impact was

acceptable (0.2% slowdown) in our submitted value predictor.

4 Dynamic Accuracy / Coverage Control

4.1 Adaptive Forward Probabilistic Counter

To reduce the storage cost of confidence counter, forward

probabilistic counter (FPC) [3] is efficient because the accuracy

and the coverage can be optimized by just changing forward

progress probability. Setting right forward probability is very

important to maximize a value predictor performance.

One problem of existing static FPC algorithm is that the

probability is fixed at the design time. For CVP-1 distributed

traces, each trace has its own ‘best’ forward probability. If the

predictor can dynamically adjust its forward probability, it can

improve the performance. To adjust forward probabilistic

value dynamically, we propose adaptive forward probabilistic

counter. This scheme employs small table, which is called

accuracy tracking table, to track the accuracy of the recent

prediction. The tracking is performed for some categories. If

the accuracy is lower than pre-defined threshold, the forward

probability is reduced to spend more time to learn the value.

In this submission, the accuracy tracking table employs

multiple saturation counters to track the accuracy for certain

categories which are generated by (1) instruction address, (2)

instruction type (load instruction or not) and (3) actual latency

since the instruction type can give us the resource confliction

and the latency implies the benefit for a correct prediction.

Using instruction type to classify the instruction is derived

from old branch predictor work [1]. PC qualification helps to

capture outlier instructions.

When a wrong value prediction is created, the counter of the

accuracy tracking table entry is incremented. When a correct

prediction is created, the counter is decremented by a certain

probability. This probability can be defined by ‘target accuracy’.

If the value predictor is designed to realize more than 99.2%

accuracy for the corresponding accuracy tracking type, the

counter is decremented with 0.8% probability. When the

counter is larger than thresholds, the predictor reduces the

forward progress probability to improve accuracy.

When the accuracy of the corresponding category is lower

than the target probability (e.g., 99.2%), the counter will be a

large value. If the large value is detected, the value predictor

starts to train the same value more by reducing the forward

probability. This process increases the accuracy by reducing

the coverage. On the other hand, when the counter indicates

high accuracy, the counter is going to have small value. If this

4

case is detected, the value predictor starts to learn the value

less by increasing the forward probability. This can improve

prediction coverage.

In this submission, accuracy tracking table employs 32-

entry 4-bit counters to track the accuracy of each category. 32-

table entries are categorized into five classes (Table 1). Each

class has 4 or 8 accuracy tracking entries and these entries are

selected by hashed PC.

Table 1: Budget Counting for Submitted Predictor

4.2 Blacklist Filtering

When the predictor makes misprediction, small number of

instructions often covers majority of incorrect predictions. This

situation can happen even if the overall prediction accuracy is

high. If the predictor can exclude such outliers not to make

prediction, the overall performance can be improved.

To exclude these outliers, we propose blacklist filtering

which is originally proposed for branch prediction [7]. The

blacklist filter employs a set-associative partially tagged cache

to track the recently miss-predicted instructions. The accuracy

tracking is realized by forward probabilistic counter. The

counter is incremented by misprediction, decremented by

correct prediction with a certain probability. When the tracking

accuracy is less than a target probability, the blacklist filter

suppresses the prediction. Even if the blacklist filter prevents

the prediction, the value predictor keeps learning. If the value

predictor starts to generate correct prediction, the filter allows

the predictor to make prediction again.

In this submission, the filter is implemented as 128-set, 2-

way skewed associative cache. The replacement policy is NRU-

like. Each filter entry has 4-bit counter to track the accuracy.

5 Value Predictor Configuration for Championship

For the championship, we implement all proposed features

within 8KB budget. The main predictor is CBC-VTAGE which

employs 8-tables. Each table has 128-entry. Each entry has 13-

bit tag, 3-bit confidence counter, 2-bit usefulness counter, and

28-bit predict value information. Each prediction table entry is

compressed by a value compression cache with lazy allocation.

To maximize the storage efficiency, one entry can have five

different formats as shown in Fig 5. Fig 5 (0) is a format for

training before confidence counter reaches 3. When a new CBC-

VTAGE entry is allocated on the table, the prediction entry has

this format. This format can track only lower 10-bit of last

value. The value compression cache entry is not allocated for

this format. Fig 5 (1) and (2) show the formats for last value

prediction. When the training entry reaches certain confidence

(confidence counter turns to 3) and its stride is zero, the

prediction entry switches to these formats. Fig 5 (3) and (4)

show the formats for stride prediction.

For last value formats, the compression cache entry can be

assigned only when the MSB shows complex bit patterns. If the

MSB is just sign extension, the value is just supplemented by

sign extension indication as shown in Fig 5 (1). For the stride

formats, the base value is allocated on the value compression

cache. The stride field has the value compression cache entry

only when the stride cannot be represented by 8-bit value.

As shown in Fig 1, CBC-VTAGE tables are multi-banked and

crossbars controlled by a hashed PC realizes bank-interleaving

[2]. CBC-VTAGE uses a global counter tracks the difficulty of

prediction table allocation as proposed in branch predictor [2].

If the allocation difficulty exceeds certain threshold, the

predictor decrements usefulness bit from all prediction entries.

On top of this base CBC-VTAGE predictor, we applied dynamic

accuracy / coverage techniques proposed in previous section.

Conf < TStride (8-bit) Base (10-bit)-

U

(1) Last Value Entry

- -

Conf >= TLast Value (24-bit)0 0 Sign

Conf >= T0 1 0 Base (10-bit)

(3) Stride Entry

Conf >= T1 0 Stride (8-bit) Base (10-bit)

Conf >= T1 1 Stride pointer (8-bit) Base (10-bit)Base pointer (8-bit)

Base pointer (8-bit)

Base pointer (8-bit)

Sign extension hint 00: [63:24]=0, 01: [31:24]=1, 10: [47:24]=1, 11: [63:24]=1

Value Compression Cache will provide [53:0]. [63:54] is sign extension

Value Compression Cache will provide [63:10]

Tag Value (28-bit) Conf

(0) Training Entry

(2) Last Value w/ Value Compression

(4) Stride Entry w/ Value Compression

[63:8] sign extension

Prediction Table Entry

Fig 5: CBC-VTAGE Prediction Entry Format

6 Evaluation

Table 2 shows the total storage budget for the submitted

predictor. The predictor consumes 65403 bits which satisfies

the 8KB track constraint.

Table 2: Budget Counting for Submitted Predictor

instruction

type

actual

latency

accuracy

table

entries

Category 1 (long latency load) load >64 8

Category 2 (medium latency load) load 9-64 8

Category 3 (short latency load) load 1-8 8

Category 4 (long latency arithmetic) non-load >1 4

Category 5 (short latency arithmetic) non-load 1 4

Resource Attribute Bit per entry # of entry Total bits

Tag 13 1024 13312

Confidence 3 1024 3072

Usefulness 2 1024 2048

Value 28 1024 28672

Global TICK Counter 10 1 10

Value 54 255 13770

Replacement info (NRU) 1 255 255

CLOCK pointer 8 1 8

Accuracy tracking table

(32-entry) 4 32 128

tag 11 256 2816

counter 4 256 1024

Replacement info (NRU) 1 256 256

Miscelleneous random value seed 32 1 32

Total 65403

CBC-VTAGE

1024 entry

(8-tables x 128-entry)

Value Compression Table

(255-way full associative)

Blacklist filter

(2-way, 128-entry/way)

 5

This value predictor achieves 3.76 instruction per cycle for

geometric mean of 135 distributed CVP-1 traces. This IPC is

improved by 17.1% from no value prediction configuration. Fig

6 shows the performance comparison against representative

value prediction algorithms. Each algorithm is evaluated with

both small storage budget and reasonably large storage budget.

The proposed value predictor not only outperforms existing

predictors with similar storage budget, but also realize

comparable performance with much bigger value predictors.

Fig 6: Speedup for CVP-1 distributed 135 traces

Fig 7 shows the sorted speedup over no value prediction.

For 89 out of 135 traces, the submitted value predictor shows

more than 1% speedup. For 13 out of 135 traces, the predictor

caused more than 1% slowdown. The worst slowdown is

observed on compute_fp_6 (-10.0%) and the biggest speedup is

observed on compute_int_45 (1094.1%).

Fig 7: Sorted speedup. This chart excludes two traces
which show 641% and 1094% speedup respectively

Fig 8 shows the breakdown of 17.1% speedup for the

submitted predictor. In this chart, 19.4KB D-VTAGE is treated

as the baseline. This predictor improves IPC by 6.2% from no

value prediction. CBC-VTAGE without a compression (17.0KB)

outperforms the baseline D-VTAGE by 5.3%. After we tuned

forward probability parameters (e.g., dedicated static forward

probability for each instruction class), 17.0KB CBC-VTAGE

improves IPC by 4.2%. The value compression cache reduced

storage budget from 17.0KB to 7.5KB with 0.3% slowdown. The

adaptive forward probabilistic counter and the blacklist filter

improve IPC by 0.1% and 1.6% respectively.

Fig 8: Speedup breakdown over 19.4KB D-VTAGE

7 Conclusion

In this paper, we proposed context-base computational

value prediction to cover more value prediction opportunity.

We also proposed value compression and dynamic accuracy

and coverage control schemes to achieve high performance

with limited resource.

Our context-base computation value prediction is a new

efficient implementation to cover delta patterns. To maximize

storage efficiency, we also proposed a value compression cache

and lazy allocation. The value compression cache exploits value

locality to minimize storage cost. Lazy allocation helps to

eliminate useless cache entries by using progress of the

confidence counter. We also proposed two different dynamic

accuracy / coverage control schemes. One is controlling

forward probability of forward probabilistic counter and the

other filtered out incorrect predictions.

The value predictor supporting all proposed mechanisms

achieves 17.1% speedup over no value prediction with 8KB

budget.

REFERENCES
[1] T.-Y. Yeh and Y. N. Patt, “A comparison of dynamic branch predictors that

use two levels of branch history,” in Proceedings of the 20th Annual
International Symposium on Computer Architecture, ISCA ’93

[2] A. Seznec, “A 64-kbytes ITTAGE indirect branch predictor,” in Third
Championship Branch Prediction, JWAC-2, 2011.

[3] A. Perais and A. Seznec, “Practical data value speculation for future high-
end processors,” in High Performance Computer Architecture (HPCA),
2014 IEEE 20th International Symposium on, Feb 2014

[4] A. Perais and A. Seznec, “BeBoP: A cost effective predictor infrastructure
for superscalar value prediction,” in 2015 IEEE 21st International
Symposium on High Performance Computer Architecture (HPCA), Feb
2015

[5] T. Nakra, R. Gupta, M. L. Soffa, “Global Context -Based Value Prediction,”
in High Performance Computer Architecture (HPCA), 1999

[6] A. Seznec and P. Michaud, “A case for (partially) TAgged GEometric
history length branch prediction,” Journal of Instruction Level
Parallelism, vol. 8, pp. 1–23, 2006.

[7] Y. Ishii, K. Kuroyanagi, T. Sawada, M. Inaba, and K. Hiraki. Revisiting
local history for improving fused two-level branch predictor in Third
Championship Branch Prediction, JWAC-2, 2011.

0.0%

5.0%

10.0%

15.0%

20.0%

7.7KB 164.0KB 7.9KB 155.0KB 8.0KB

VTAGE D-VTAGE CBC-
VTAGE

Sp
ee

d
u

p
 o

ve
r

n
o

 V
P

-50%

0%

50%

100%

150%

200%

250%

300%

Sp
ee

d
u

p
 o

ve
r

n
o

 V
P

6

8 Appendix 1 (Prediction Resource)

9 Appendix 2 (Inflight Resource)

10 Appendix 3 (VTAGE/D-VTAGE config)

Predictor Storage budget

7.9KB

19.4KB

155.0KB

7.7KB

164.0KB

VTAGE

3-tables to track last value. Branch history length = [0, 5, 13]. Each table entry contains 64-bit value, 13-bit tag, 3-bit confidence, 2-

bit usefulness counter. Each table has 256-entry. Forward probability is 1/16.

8-tables to track last value. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 64-bit value, 13-bit tag, 3-bit

confidence, 2-bit usefulness counter. Each table has 2048-entry. Forward probability is 1/16.

Configuration detail

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 256-entry. Last value pre dictor is realized by 2-way

skewed cache, each way contains 256-entry (total 512-entry for last value predictor). Each last value entry contains 64-bit last

value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 2048-entry. Last value predictor is realized by 2-

way skewed cache, each way contains 2048-entry (total 4096-entry for last value predictor). Each last value entry contains 64-bit

last value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 2048-entry. Last value predictor is realized by 2-

way skewed cache, each way contains 2048-entry (total 4096-entry for last value predictor). Each last value entry contains 64-bit

last value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

D-VTAGE

Prediction Resource Attribute Bit per entry # of entry Total bits How these are implemented?

Tag 13 1024 13312

Confidence 3 1024 3072

Usefulness 2 1024 2048

Value 28 1024 28672

Global TICK Counter 10 1 10 member variable 'tick' in ValuePredictor class.

Value 54 255 13770

Replacement info (NRU) 1 255 255

CLOCK pointer 8 1 8

Accuracy tracking table

(32-entry) 4 32 128
AccuracyTrackTable class in mypredictor.h covers this resource

Tag 11 256 2816

Counter 4 256 1024

Replacement info (NRU) 1 256 256

Miscelleneous Random value seed 32 1 32 RandomNumberGenerator class has this resource.

Total 65403

ValuePredictor class in mypredictor.h covers this resource.

predTable[] is the resource for this information.

In this array MSB indicates table ID and lower 7-bit is actual index.

Branch history length = [0, 0, 10, 17, 29, 45, 77, 126].

ValueCompressCache in mypredicter.h covers this resource

ValuePredictor instantiates this storage

'last_alloc' indicates CLOCK pointer

BlackListFiterTable class in mypredictor.h cover this resource.

CBC-VTAGE

1024 entry

(8-tables x 128-entry)

Value Compression Table

(255-way full associative)

Blacklist filter

(2-way, 128-entry/way)

Inflight resource Attribute Bit per entry # of entry total How these are implemented?

Hashed PC 48 257 12336

Pointer for GHR/PHR 11 257 2827

Load instruction type 1 257 257 'load' in InflightPredictionEntry. This is instruction type of corresponding inflight buffer entry

Eligibility 1 257 257 Eligiblity (if the instruction can make value prediction) to update value predictor

Inflight instruction count 9 1 9 Defined as 'size' in InflightBuffer class

GHR, PHR 2048 2 4096
GHR and PHR tracks up to 2048-history within ring buffer.

This buffer realizes 126-bit branch history.

Pointer 11 1 11 Pointer of the GHR/PHR ring buffer

Inflight Buffer

Branch History

Defined in inflightTable[] in InflightBuffer class

Track PC and GHR pointer to reproduce folded history

