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ABSTRACT 

In this paper, we propose context-base computation value 

prediction and aggressive cost reduction techniques exploiting 

value locality. Context-base computational value prediction 

tracks both base value and its stride for corresponding context 

to cover context-dependent delta patterns. We also propose an 

aggressive value compression scheme using value compression 

cache. This cache tracks higher order bits of tracking values. To 

maximize the storage efficiency, the data can be cached only 

after the predicting value have a certain confidence. 

We applied these proposals and dynamic coverage accuracy 

control on TAGE inspired value predictor, CBC-VTAGE. With 

8KB storage budget, our optimized CBC-VTAGE achieves 17.1% 

speedup compared with processor without value prediction. 

The geomean of IPC for distributed 135 traces is 3.76. 

1 Introduction 

Modern microprocessors employ prediction mechanisms 

to improve their performance. However, some of known 

predictors were not widely implemented in commercial 

processors. A value predictor is one of such known 

unimplemented predictors. Recently, some academic papers 

[3,4] proposed new value prediction algorithms which 

demonstrated high performance. However, these predictors 

cannot improve performance if the detected value patterns rely 

on both delta from last value and its context. Moreover, the 

storage requirements of these value predictors are typically 

significant compared with the other prediction mechanisms. 

For example, VTAGE [3] requires a huge storage (e.g., 32KB) to 

realize noticeable performance improvement. 

In this paper, we propose (1) context-base computational 

value prediction to correctly predictor certain value access 

patterns which could not be caught by existing value predictors 

and (2) aggressive data compression to reduce the storage 

requirement, and (3) dynamic coverage / accuracy control to 

maximize performance. 

2 Context-Base Computational Value Prediction 

Many existing value predictors capture value patterns by 

correlating the previously appeared value patterns and the 

corresponding context. One of representative value pattern is a 

stride pattern (or delta pattern). To track the stride, value 

predictors hold the last value and its stride from second oldest 

value in the prediction storage. When the same instruction is 

executed with same context, the summation of the last value 

and the stride is produced as a predicted value. However, when 

one instruction processes multiple different data streams, 

existing value predictors cannot produce correct prediction 

efficiently. 

Fig 1 shows the representative example. In this example, 

two different contexts (function A and function B) call one 

shared function (function C). One instruction in function C is 

the target of the value prediction. The produced value stream 

(2, 3, 4, 6, 6, and 9) on this instruction cannot be predicted by 

existing stride predictor because it correlates last value and 

stride with corresponding PC. However, if the value predictor 

can separate the stream for each caller function, the value 

becomes predictable. When the function was called from 

function A, the value pattern is 2, 4, and 6. If the function was 

called by function B, the value pattern is 3, 6, and 9. 

Non-PC localized stride (depend on context)

Function A

Call C

Function B

Call C

Function C

LD %r1, [M] Caller=A: 2, 4, 6,  

Caller=B: 3, 6, 9, ...

Global : 2,3,4,6,6,9, ...

 

Fig 1: Context-base Computational Pattern 

To predict this pattern, both the last value and the stride 

should be correlated with its context. However, recently 

proposed value predictors cannot track this type value patterns 

efficiently. For example, D-VTAGE [4] cannot predict the value 

pattern efficiently since D-VTAGE still uses PC indexed last 

value table to provide base value. To predict this pattern, D-

VTAGE needs to allocate many entries to track each stride. 

To support this value pattern, we propose context-base 

computational value prediction. With this prediction algorithm, 

one prediction entry tracks both the last value and its stride 

with correlated context. When the value predictor detected the 

same context, the value predictor starts to make prediction 

based on tracking last value and the stride. This prediction 

scheme was originally proposed as per-path stride, per-path 
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predictor [5]. However, the predictor capability was limited 

because the predictor employs only one pattern table.  

To realize efficient context-base computational predictor, 

we applied this prediction algorithm on TAGE [6] inspired 

predictor, Context-Base Computational Value predictor TAGE 

(CBC-VTAGE). Fig 2 shows the overview of CBC-VTAGE. Like 

the other TAGE inspired predictors [3,4], CBC-VTAGE has 

multiple components correlated with different branch history 

length. A prediction entry in each component is partially tagged 

by hashed branch histories. The prediction entry can make a 

prediction only when the tag matched against hash value 

created from current context information. When multiple tags 

are matched, the component correlated with the longest 

branch history length can provide the final prediction. The 

value prediction is created only when the confidence counter 

of the longest matching entry is saturated.  

The prediction part of each entry has two fields to track (1) 

a last value and (2) a stride of corresponding context. When the 

entry is updated, both the last value and the stride are updated. 

Unlike the other TAGE inspired predictors, CBC-VTAGE can 

update all tag matching entries if its strides are none-zero. This 

is necessary to maintain the correct last predicted value for 

each prediction entry while the other TAGE inspired predictors 

update only the longest matching prediction entry. 
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Fig 2: Context-base Computational Value Predictor TAGE 

The other differences of CBC-VTAGE are also show in Fig 2. 

A CBC-VTAGE in this paper does not have tag less components. 

Base components are also tagged. Moreover, the tag width of all 

tables is same to support a bank interleaving mechanism [2] to 

maximize the storage efficiency. Each hash value created from 

the branch history is swapped based on the hashed PC. We also 

apply an aggressive value compression scheme described in 

next section to minimize the cost. 

In most of existing value prediction papers, the predictor is 

updated after commit and CVP-1 also follows this design. For 

such a processor core, the computational value predictor needs 

to maintain inflight information to reproduce speculative 

value. Since one CBC-VTAGE prediction entry tracks both last 

value and its stride. To reproduce the last value, the predictor 

needs to track only the number of instructions accessing the 

same prediction entry. If N inflight instruction used the entry, 

the speculative last value can be calculated by ‘committed last 

value + N * committed stride’. Unlike D-VTAGE, the speculative 

information tracking mechanism doesn’t need to track the 

speculative last value. This helps to mitigate the complexity and 

the cost of existing computational value predictors. 

3 Aggressive Data Compression for Value Predictor 

3.1 Value Compression Cache 

When processor produced the integer value, the values 

tend to belong to subset of a certain value set (e.g., 0, 1, -1, …). 

If the produced value is for an address, the produced values 

tend to point a similar address ranges since one application 

typically accesses to a small subset of huge virtual address 

space. These facts indicate that higher order bits of predicted 

values have some spatial locality. This means that multiple 

values can share same higher order bits. 

To exploit this locality, we introduced value compression 

cache. This idea is basically derived from ITTAGE region cache 

[2]. In this study, we implement 255-entry full associative 

structure to compress higher order bits. For real hardware, 2-

way or 4-way skewed associative cache should realize similar 

capability. To utilize this compression cache, each prediction 

entry needs to track 8-bit pointer instead of tracking raw data. 

When a prediction is created, the value predictor read this 

cache by that pointer to produce higher order bits of predicted 

value (Fig 3). The value compression cache entry tracks 54-bit 

value in this study. The value compression cache can also 

compress a stride value. When the stride value is compressed, 

54-bit value tracked by the value compression cache is mapped 

to lower 54-bit of compressed stride. Higher order bits of stride 

value will be supplemented by sign extension. We also 

implement one reserved entry (256th entry) to produce ‘0’ from 

this table without consuming storage cost. 

Value [53:0] + NRU

ID[7:0]

Last entry is always 0

#n

Value Compression Cache

 

Fig 3: Value Compression Cache 



  

 

 3 

3.2 Lazy Allocation for Value Compression Cache 

The value compression cache exploits the spatial locality to 

save storage cost. We also found that non-negligible number of 

the allocated cache entries never be used for actual value 

prediction since the corresponding prediction entry is evicted 

before its confidence counter gets saturated. 

For such entries, the confidence counters typically do not 

exceed a half of its saturated value (‘3’ for 3-bit forward 

probabilistic confidence counter) and only a few lower order 

bits are enough to qualify the confidence of the corresponding 

prediction entry. To exploit this locality, the allocation of value 

compression cache is delayed until the confidence counter of 

the corresponding value prediction entry reaches a certain 

threshold. In this paper, the predictor starts to allocate value 

compression cache entry only when the confidence counter 

reaches ‘3’ for 3-bit confidence counter. The cache entry for 

stride value is allocated when the confidence value turns to ‘4’ 

since full last value is necessary to calculate 54-bit stride value. 

Before the confidence value reaches ‘4’, the value predictor 

qualifies only lower 8-bit of predicting value. 

Fig 4 shows the overview of the lazy allocation for 3-bit 

forward probabilistic counter (FPC) [3]. When the prediction 

entry is allocated, the confidence counter is initialized to zero. 

When the correct prediction is qualified, the value is turned to 

1. After confidence counter reaches 1, subsequent increment 

can happen only when the correct prediction was identified 

with the certain probability. When the counter turned to ‘3’, the 

base value is allocated in the value compression cache. When 

the value turns to ‘4’, the stride value is assigned on the value 

compression cache if necessary. Before the confidence counter 

reaches ‘4’, only 8-bit of predicted value is checked at update 

timing since higher order bits might not be tracked by the 

predictor. After the confidence counter reaches 4, full value can 

be qualified. The predictor starts to make prediction after the 

confidence value turns to ‘7’. 

0 1 2 3

Value Compression 
Cache Allocation for 

Base Value

4 5 6 7

Start to make predictionValue Compression 
Cache Allocation for 

Stride Value

Check only lower 8-bit value

Check full 64-bit value

1 1/n 1/n 1/n

1/n 1/n 1/n

After allocation or 
misprediction

 

Fig 4: Lazy Allocation on Forward Probabilistic Counter 

3.3 Value Compression Cache Replacement 

The replacement policy of the value compression cache is 

CLOCK in this paper. Each entry has 1-bit NRU information and 

the cache maintains one shared CLOCK pointer. When the cache 

entry is replaced, the confidence counters using the victimized 

entry are reset to a defined value (‘3’ for 3-bit confidence 

counter in this study). In real hardware, this reset mechanism 

might not be necessary since its performance impact was 

acceptable (0.2% slowdown) in our submitted value predictor. 

4 Dynamic Accuracy / Coverage Control 

4.1 Adaptive Forward Probabilistic Counter 

To reduce the storage cost of confidence counter, forward 

probabilistic counter (FPC) [3] is efficient because the accuracy 

and the coverage can be optimized by just changing forward 

progress probability. Setting right forward probability is very 

important to maximize a value predictor performance. 

One problem of existing static FPC algorithm is that the 

probability is fixed at the design time. For CVP-1 distributed 

traces, each trace has its own ‘best’ forward probability. If the 

predictor can dynamically adjust its forward probability, it can 

improve the performance. To adjust forward probabilistic 

value dynamically, we propose adaptive forward probabilistic 

counter. This scheme employs small table, which is called 

accuracy tracking table, to track the accuracy of the recent 

prediction. The tracking is performed for some categories. If 

the accuracy is lower than pre-defined threshold, the forward 

probability is reduced to spend more time to learn the value. 

In this submission, the accuracy tracking table employs 

multiple saturation counters to track the accuracy for certain 

categories which are generated by (1) instruction address, (2) 

instruction type (load instruction or not) and (3) actual latency 

since the instruction type can give us the resource confliction 

and the latency implies the benefit for a correct prediction. 

Using instruction type to classify the instruction is derived 

from old branch predictor work [1]. PC qualification helps to 

capture outlier instructions. 

When a wrong value prediction is created, the counter of the 

accuracy tracking table entry is incremented.  When a correct 

prediction is created, the counter is decremented by a certain 

probability. This probability can be defined by ‘target accuracy’. 

If the value predictor is designed to realize more than 99.2% 

accuracy for the corresponding accuracy tracking type, the 

counter is decremented with 0.8% probability. When the 

counter is larger than thresholds, the predictor reduces the 

forward progress probability to improve accuracy. 

When the accuracy of the corresponding category is lower 

than the target probability (e.g., 99.2%), the counter will be a 

large value. If the large value is detected, the value predictor 

starts to train the same value more by reducing the forward 

probability. This process increases the accuracy by reducing 

the coverage. On the other hand, when the counter indicates 

high accuracy, the counter is going to have small value. If this 
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case is detected, the value predictor starts to learn the value 

less by increasing the forward probability. This can improve 

prediction coverage. 

In this submission, accuracy tracking table employs 32-

entry 4-bit counters to track the accuracy of each category. 32-

table entries are categorized into five classes (Table 1). Each 

class has 4 or 8 accuracy tracking entries and these entries are 

selected by hashed PC. 

Table 1: Budget Counting for Submitted Predictor 

 

4.2 Blacklist Filtering 

When the predictor makes misprediction, small number of 

instructions often covers majority of incorrect predictions. This 

situation can happen even if the overall prediction accuracy is 

high. If the predictor can exclude such outliers not to make 

prediction, the overall performance can be improved. 

To exclude these outliers, we propose blacklist filtering 

which is originally proposed for branch prediction [7]. The 

blacklist filter employs a set-associative partially tagged cache 

to track the recently miss-predicted instructions. The accuracy 

tracking is realized by forward probabilistic counter. The 

counter is incremented by misprediction, decremented by 

correct prediction with a certain probability. When the tracking 

accuracy is less than a target probability, the blacklist filter 

suppresses the prediction. Even if the blacklist filter prevents 

the prediction, the value predictor keeps learning. If the value 

predictor starts to generate correct prediction, the filter allows 

the predictor to make prediction again. 

In this submission, the filter is implemented as 128-set, 2-

way skewed associative cache. The replacement policy is NRU-

like. Each filter entry has 4-bit counter to track the accuracy. 

5 Value Predictor Configuration for Championship 

For the championship, we implement all proposed features 

within 8KB budget. The main predictor is CBC-VTAGE which 

employs 8-tables. Each table has 128-entry. Each entry has 13-

bit tag, 3-bit confidence counter, 2-bit usefulness counter, and 

28-bit predict value information. Each prediction table entry is 

compressed by a value compression cache with lazy allocation. 

To maximize the storage efficiency, one entry can have five 

different formats as shown in Fig 5. Fig 5 (0) is a format for 

training before confidence counter reaches 3. When a new CBC-

VTAGE entry is allocated on the table, the prediction entry has 

this format. This format can track only lower 10-bit of last 

value. The value compression cache entry is not allocated for 

this format. Fig 5 (1) and (2) show the formats for last value 

prediction. When the training entry reaches certain confidence 

(confidence counter turns to 3) and its stride is zero, the 

prediction entry switches to these formats. Fig 5 (3) and (4) 

show the formats for stride prediction. 

For last value formats, the compression cache entry can be 

assigned only when the MSB shows complex bit patterns. If the 

MSB is just sign extension, the value is just supplemented by 

sign extension indication as shown in Fig 5 (1). For the stride 

formats, the base value is allocated on the value compression 

cache. The stride field has the value compression cache entry 

only when the stride cannot be represented by 8-bit value. 

As shown in Fig 1, CBC-VTAGE tables are multi-banked and 

crossbars controlled by a hashed PC realizes bank-interleaving 

[2]. CBC-VTAGE uses a global counter tracks the difficulty of 

prediction table allocation as proposed in branch predictor [2]. 

If the allocation difficulty exceeds certain threshold, the 

predictor decrements usefulness bit from all prediction entries. 

On top of this base CBC-VTAGE predictor, we applied dynamic 

accuracy / coverage techniques proposed in previous section. 

 

Conf < TStride (8-bit) Base (10-bit)-

U

(1) Last Value Entry

- -

Conf >= TLast Value (24-bit)0 0 Sign

Conf >= T0 1 0 Base (10-bit)

(3) Stride Entry

Conf >= T1 0 Stride (8-bit) Base (10-bit)

Conf >= T1 1 Stride pointer (8-bit) Base (10-bit)Base pointer (8-bit)

Base pointer (8-bit)

Base pointer (8-bit)

Sign extension hint 00: [63:24]=0, 01: [31:24]=1, 10: [47:24]=1, 11: [63:24]=1

Value Compression Cache will provide [53:0]. [63:54] is sign extension

Value Compression Cache will provide [63:10]

Tag Value (28-bit) Conf

(0) Training Entry

(2) Last Value w/ Value Compression

(4) Stride Entry w/ Value Compression

[63:8] sign extension

Prediction Table Entry

 

Fig 5: CBC-VTAGE Prediction Entry Format 

6 Evaluation 

Table 2 shows the total storage budget for the submitted 

predictor. The predictor consumes 65403 bits which satisfies 

the 8KB track constraint. 

Table 2: Budget Counting for Submitted Predictor 

 

instruction

type

actual

latency

accuracy

table

entries

Category 1 (long latency load) load >64 8

Category 2 (medium latency load) load 9-64 8

Category 3 (short latency load) load 1-8 8

Category 4 (long latency arithmetic) non-load >1 4

Category 5 (short latency arithmetic) non-load 1 4

Resource Attribute Bit per entry # of entry Total bits

Tag 13 1024 13312

Confidence 3 1024 3072

Usefulness 2 1024 2048

Value 28 1024 28672

Global TICK Counter 10 1 10

Value 54 255 13770

Replacement info (NRU) 1 255 255

CLOCK pointer 8 1 8

Accuracy tracking table

(32-entry) 4 32 128

tag 11 256 2816

counter 4 256 1024

Replacement info (NRU) 1 256 256

Miscelleneous random value seed 32 1 32

Total 65403

CBC-VTAGE

1024 entry

(8-tables x 128-entry)

Value Compression Table

(255-way full associative)

Blacklist filter

(2-way, 128-entry/way)
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This value predictor achieves 3.76 instruction per cycle for 

geometric mean of 135 distributed CVP-1 traces. This IPC is 

improved by 17.1% from no value prediction configuration. Fig 

6 shows the performance comparison against representative 

value prediction algorithms. Each algorithm is evaluated with 

both small storage budget and reasonably large storage budget. 

The proposed value predictor not only outperforms existing 

predictors with similar storage budget, but also realize 

comparable performance with much bigger value predictors. 

 

Fig 6: Speedup for CVP-1 distributed 135 traces 

Fig 7 shows the sorted speedup over no value prediction. 

For 89 out of 135 traces, the submitted value predictor shows 

more than 1% speedup. For 13 out of 135 traces, the predictor 

caused more than 1% slowdown. The worst slowdown is 

observed on compute_fp_6 (-10.0%) and the biggest speedup is 

observed on compute_int_45 (1094.1%). 

 

Fig 7: Sorted speedup. This chart excludes two traces 
which show 641% and 1094% speedup respectively 

Fig 8 shows the breakdown of 17.1% speedup for the 

submitted predictor. In this chart, 19.4KB D-VTAGE is treated 

as the baseline. This predictor improves IPC by 6.2% from no 

value prediction. CBC-VTAGE without a compression (17.0KB) 

outperforms the baseline D-VTAGE by 5.3%. After we tuned 

forward probability parameters (e.g., dedicated static forward 

probability for each instruction class), 17.0KB CBC-VTAGE 

improves IPC by 4.2%. The value compression cache reduced 

storage budget from 17.0KB to 7.5KB with 0.3% slowdown. The 

adaptive forward probabilistic counter and the blacklist filter 

improve IPC by 0.1% and 1.6% respectively. 

 

Fig 8: Speedup breakdown over 19.4KB D-VTAGE 

7 Conclusion 

In this paper, we proposed context-base computational 

value prediction to cover more value prediction opportunity. 

We also proposed value compression and dynamic accuracy 

and coverage control schemes to achieve high performance 

with limited resource. 

Our context-base computation value prediction is a new 

efficient implementation to cover delta patterns. To maximize 

storage efficiency, we also proposed a value compression cache 

and lazy allocation. The value compression cache exploits value 

locality to minimize storage cost. Lazy allocation helps to 

eliminate useless cache entries by using progress of the 

confidence counter. We also proposed two different dynamic 

accuracy / coverage control schemes. One is controlling 

forward probability of forward probabilistic counter and the 

other filtered out incorrect predictions. 

The value predictor supporting all proposed mechanisms 

achieves 17.1% speedup over no value prediction with 8KB 

budget. 
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8 Appendix 1 (Prediction Resource) 

 

9 Appendix 2 (Inflight Resource) 

 

10 Appendix 3 (VTAGE/D-VTAGE config) 

 

Predictor Storage budget

7.9KB

19.4KB

155.0KB

7.7KB

164.0KB

VTAGE

3-tables to track last value. Branch history length = [0, 5, 13]. Each table entry contains 64-bit value, 13-bit tag, 3-bit confidence, 2-

bit usefulness counter. Each table has 256-entry.  Forward probability is 1/16.

8-tables to track last value. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 64-bit value, 13-bit tag, 3-bit 

confidence, 2-bit usefulness counter. Each table has 2048-entry. Forward probability is 1/16.

Configuration detail

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit 

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 256-entry. Last value pre dictor is realized by 2-way 

skewed cache, each way contains 256-entry (total 512-entry for last value predictor). Each last value entry contains 64-bit last 

value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit 

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 2048-entry. Last value predictor is realized by 2-

way skewed cache, each way contains 2048-entry (total 4096-entry for last value predictor). Each last value entry contains 64-bit 

last value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

8-tables to track stride. Branch history length = [0, 0, 2, 4, 8, 16, 32, 64]. Each table entry contains 13-bit tag, 3-bit confidence, 2-bit 

usefulness counter. Each table entry can track up to 40-bit stride. Each table has 2048-entry. Last value predictor is realized by 2-

way skewed cache, each way contains 2048-entry (total 4096-entry for last value predictor). Each last value entry contains 64-bit 

last value, 13-bit tag, 1-bit NRU. Forward probability is 1/16.

D-VTAGE

Prediction Resource Attribute Bit per entry # of entry Total bits How these are implemented?

Tag 13 1024 13312

Confidence 3 1024 3072

Usefulness 2 1024 2048

Value 28 1024 28672

Global TICK Counter 10 1 10 member variable 'tick' in ValuePredictor class.

Value 54 255 13770

Replacement info (NRU) 1 255 255

CLOCK pointer 8 1 8

Accuracy tracking table

(32-entry) 4 32 128
AccuracyTrackTable class in mypredictor.h covers this resource

Tag 11 256 2816

Counter 4 256 1024

Replacement info (NRU) 1 256 256

Miscelleneous Random value seed 32 1 32 RandomNumberGenerator class has this resource.

Total 65403

ValuePredictor class in mypredictor.h covers this resource.

predTable[] is the resource for this information.

In this array MSB indicates table ID and lower 7-bit is actual index.

Branch history length = [0, 0, 10, 17, 29, 45, 77, 126].

ValueCompressCache in mypredicter.h covers this resource

ValuePredictor instantiates this storage

'last_alloc' indicates CLOCK pointer

BlackListFiterTable class in mypredictor.h cover this resource.

CBC-VTAGE

1024 entry

(8-tables x 128-entry)

Value Compression Table

(255-way full associative)

Blacklist filter

(2-way, 128-entry/way)

Inflight resource Attribute Bit per entry # of entry total How these are implemented?

Hashed PC 48 257 12336

Pointer for GHR/PHR 11 257 2827

Load instruction type 1 257 257 'load'  in InflightPredictionEntry. This is instruction type of corresponding inflight buffer entry

Eligibility 1 257 257 Eligiblity (if the instruction can make value prediction) to update value predictor

Inflight instruction count 9 1 9 Defined as 'size' in InflightBuffer class

GHR, PHR 2048 2 4096
GHR and PHR tracks up to 2048-history within ring buffer.

This buffer realizes 126-bit branch history.

Pointer 11 1 11 Pointer of the GHR/PHR ring buffer

Inflight Buffer

Branch History

Defined in inflightTable[] in InflightBuffer class

Track PC and GHR pointer to reproduce folded history


