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Increasing	communication	between	threads
in	GPGPU	applications

More	irregular	applications	run	on	GPUs
data-dependent,
higher	communication

TreeBuildingkernel	in	barneshut
(Burtscher et	al.,	IISWC’12)
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fine-grained	communication
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Cache	coherence	[Power	et	al.,	MICRO’13]
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Heterogeneous	systems	will	have	more	
fine-grained	communication
Fine-grain	communication	between	
CPU	and	GPU

Unified	virtual	memory
Cache	coherence	[Power	et	al.,	MICRO’13]

OpenCL supports	fine-grain	sharing

More	irregularity	in	applications

CPU GPU

Other	
AcceleratorMemory
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Memory	Consistency	Model

Defines	rules	that	a	programmer	can	use	to	reason	about	a	parallel	execution

Sequential	Consistency	(SC)
“program-order”	+
“atomic	memory”

ptr = NULL; done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x  
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Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables
Compiler	and	runtime	guarantee	total	order	on	synchronization	operations

ptr = NULL; done = false

Producer Consumer
a: ptr = alloc() c: if (done)
b: done = true d: r1 = ptr->x  

reordering	could	lead	
to	ptr being	NULL



Data-race-free-0	(DRF-0)	Memory	Model

C++,	Java
OpenCL,	CUDA

Heterogeneous-race-free	(HRF)	(Hower et	al.,	ASPLOS’14)

SC	if	data-race-free
Programmers	annotate	synchronization	variables
Compiler	and	runtime	guarantee	total	order	on	synchronization	operations

Undefined	semantics	for	programs	with	a	data-race



Documented	data-races	in	GPGPU	programs

Other	data-races:
N-body	simulation	[Betts	et	al.,	OOPSLA	2012]
RadixSort [Li	et	al.,	PPoPP 2012]	
Efficient	Synchronization	Primitives	for	GPUs	[Tyler	Sorensen,	MS	thesis,	2014]

Image	source:	[Alglave et	al.,	ASPLOS	2015]

Bug:	a	data-race	in	code	for
dynamic	load	balancing	
[Tyler	Sorensen,	MS	thesis,	2014]



Is	there	a	motivation	for	DRF-0	over	SC?

Performance	of	DRF-0	better	than	SC?	
Very	little	for	CPUs

IEEE	Computer’98,	PACT’02,	ISCA’12

Is	there	a	performance	justification	for	DRF-0	(or	TSO)		over	SC	in	GPUs?



Goals

Identify	sources	of	SC	violation	in	GPUs

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture
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producer       consumer

ptr = alloc()   if (done)

done = true              r1 = ptr->x

How	can	GPU	violate	SC?

Instructions	are	executed	in-order

But,	can	complete	out-of-order
– Caching	at	L1
– Reordering	in	interconnect
– Partitioned	address	space

⟹ Can	violate	SC

1

2

3

4

cache	miss
cache	hit

SC	violation



Roadmap

Identify	sources	of	SC	violation

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture



Fences	for	various	memory	models

DRF-0
fences	only	for	synchronization

SC
any	shared or	global access	behaves	like	a	fence



Naïvely	Enforcing	Fence	Constraints

Delay	a	warp	till	non-local	memory	accesses	preceding	a	fence	are	complete
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Naïvely	Enforcing	Fence	Constraints

Delay	a	warp	till	non-local	memory	accesses	preceding	a	fence	are	complete

GPU	extension:
Two	counters	per	warp	track	its	pending	global loads	and	stores	
No	need	to	track	pending	shared memory	accesses warp

id
pending	loads pending	stores

w0 0 1

… … …
… … …

Fence

Shared	memory	access

Global	memory	access



Experimental	Methodology

Simulator:	GPGPU-sim v3.2.1
– extended	with	Ruby	memory	hierarchy
– 16	SMs,	crossbar	interconnect

L1	Cache	Coherence	protocol
– MESI	for	write-back	
– Valid/Invalid	for	write-through

Benchmarks
– applications	from	Rodinia,	Polybench benchmark	suite
– Applications	used	in	GPU	coherence	[Singh	et	al.,	HPCA’13]



18	out	of	22	applications	incur
insignificant	SC	overhead

0

0.5

1

DRF-0 SC

Avg.	execution	time	
normalized	DRF-0
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Warp-level-parallelism	(WLP)	masks
SC	overhead
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block/SM
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Execution	time	normalized	to	DRF-0
(benchmark:	guassian)

1.97 2.2
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Adequate	WLP	=>	Low	SC	overhead
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Unlike	DRF-0,	SC	cannot	exploit	intra-warp	MLP



4	out	of	22	applications	exhibit
significant	SC	overhead
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3mm fdtd-2d gemm gramschm

DRF-0 SC

Execution	time	
normalized	to	DRF-0

39

Reason:	Unlike	DRF-0,	SC	cannot	exploit	intra-warp	MLP



TSO	is	not	suitable	for	GPUs
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Applications	with	significant	performance	
overhead
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TSO	does	not	offer	much	performance	or	
programmability	advantage	over	SC

Execution	time	normalized	to	baseline	(DRF-0)
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Roadmap

How	GPU	optimizations	can	violate	memory	ordering	constraints?

Understand	overhead	of	various	memory	ordering	constraints	in	GPUs
DRF-0,	TSO,	SC

Bridge	the	gap	between	SC	and	DRF-0
Access-type	aware	GPU	architecture



Access-type	Aware	Optimization	for	GPU

Relax	ordering	constraint	for	safe	accesses
Accesses	to	thread-private	or	read-only	location	are	safe
(Shasha&	Snir,	TOPLAS’88,		Singh	et	al.,	ISCA’12)

Thread-level	classification	is	prohibitively	expensive
Classify	accesses	as	unsafe	or	SM-safe
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Type-aware	SC	Extensions	to	Baseline	GPU

1. Classify	memory	accesses

2. Relax	ordering	constraints	
for	SM-safe	accesses

Problem:	Ensuring	ordering	among	conflicting	
accesses	to	an	SM-safe	location	within	an	SM
ü See	details	in	the	paper
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Type-aware	SC	incurs	only	small
performance	overhead
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Applications	with	significant	performance	overhead

DRF-0 SC Type-aware	SC

Proposed	design	is	able	to	exploit	intra-warp	MLP	for	SM-safe	accesses



Future	research	directions

Build	SC-preserving	GPU	compiler

Overhead	SC-preserving	LLVM	compiler	for	C++:	~2%				[Marino	et	al.,	PLDI’11]

GPU	Compiler

GPU	hardware

Language	level	memory	model

✔
?



Conclusion

Quantified	performance	overhead	of	various	memory	models	in	GPUs

TSO	is	unattractive	for	GPUs:	No	performance	or	programmability	benefits	over	SC

Performance	gap	between	SC	and	DRF-0	is	insignificant	for	most	applications

Access	type	aware	optimization	bridges	the	gap	in	remaining	applications



Questions?


