
Efficient GPU Synchronization without Scopes:

Saying No to Complex Consistency Models

Matthew D. Sinclair, Johnathan Alsop, Sarita V. Adve

University of Illinois @ Urbana-Champaign

hetero@cs.illinois.edu

Motivation

Consistency Coherence

Defacto

Recent

2

Heterogeneous systems now used for a wide variety of applications

Emerging applications have fine-grained synchronization

BUT current GPUs have sub-optimal consistency and coherence

This work: simple consistency + efficient coherence

Heterogeneous-race-free (HRF)

Scoped synchronization

Complex

No overhead for local synchs

Efficient for local synch

Data-race-free (DRF)

Simple

High overhead on synchs

Inefficient

complex

consistency

models

Motivation (Cont.)

DeNovo+DRF: Efficient AND simpler memory model

– Comparable or better results vs. GPU+DRF and GPU+HRF

3

Do GPU models (HRF) need to be more complex than CPU models (DRF)?

NO! Not if coherence is done right!

Outline

• Motivation

• Coherence Protocols and Consistency Models

– Classification

– GPU Coherence

– DeNovo Coherence

– Coherence and Consistency Summary

• Results

• Conclusion

4

• Read hit: Don’t return stale data

• Read miss: Find one up-to-date copy

A Classification of Coherence Protocols

Invalidator

Writer Reader

Track

up-to-

date

copy

Ownership

Writethrough

MESI

GPU

DeNovo

5

• Reader-initiated invalidations

– No invalidation or ack traffic, directories, transient states

• Obtaining ownership for written data

– Reuse owned data across synchs (not flushed at synch points)

GPU Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)
6

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

Cache

Cache

Valid Dirty
Valid

Flush dirty

data

Invalidate

all data

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data: Unnecessary writethroughs

• Invalidate all data: Can’t reuse data across synch points

– Synchronization accesses must go to last level cache (LLC)

– No overhead for locally scoped synchs

• But higher programming complexity

GPU Coherence with HRF

7

heterogeneous HRF
[ASPLOS ’14]

global

and their scopes

Global

heterogeneous

DeNovo Coherence with DRF

• With data-race-free (DRF) memory model

– No data races; synchs must be explicitly distinguished

– At all synch points

• Flush all dirty data

• Invalidate all non-owned data

– Synchronization accesses must go to last level cache (LLC)

• 3% state overhead vs. GPU coherence + HRF
8

L2 Cache
Bank

Interconnection n/w

GPU

L2 Cache
Bank

CPU

Cache

Cache

Obtain

ownership

Invalidate

non-owned data
Dirty
Valid
Own

Can reuse

owned data

Obtain ownership for dirty data

can be performed at L1

DeNovo Configurations Studied

9

• DeNovo+DRF:

– Invalidate all non-owned data at synch points

• DeNovo-RO+DRF:

– Avoids invalidating read-only data at synch points

• DeNovo+HRF:

– Reuse valid data if synch is locally scoped

Coherence & Consistency Summary

10

Coherence + Consistency Reuse Data

Owned Valid

Do Synchs

at L1

X X X

local local local

 X 

 local 

 (GD)

(GH)

(DD)

(DH)

(DD+RO)  read-only 

 GPU + DRF

 GPU + HRF

DeNovo-RO + DRF

 DeNovo + DRF

 DeNovo + HRF

Outline

• Motivation

• Coherence Protocols and Consistency Models

• Results

• Conclusion

11

Evaluation Methodology

12

• 1 CPU core + 15 GPU compute units (CU)

– Each node has private L1, scratchpad, tile of shared L2

• Simulation Environment

– GEMS, Simics, Garnet, GPGPU-Sim, GPUWattch, McPAT

• Workloads

– 10 apps from Rodinia, Parboil: no fine-grained synch

• DeNovo and GPU coherence perform comparably

– UC-Davis microbenchmarks + UTS from HRF paper:

• Mutex, semaphore, barrier, work sharing

• Shows potential for future apps

• Created two versions of each: globally, locally/hybrid scoped synch

FAM SLM SPM SPMBO AVG

0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

DeNovo has 28% lower execution time than GPU with global synch

13

Global Synch – Execution Time

0%

20%

40%

60%

80%

100%

G* D* G* D* G* D* G* D* G* D*

N/W L2 $ L1 D$ Scratch GPU Core+

Global Synch – Energy

DeNovo has 51% lower energy than GPU with global synch

14

FAM SLM SPM SPMBO AVG

0%

20%

40%

60%

80%

100%

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

Local Synch – Execution Time

FAM SLM SPM SPMBO SS SSBO TBEX UTS AVG

15

TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

 GD GH DD DD+RO DH

0%

20%

40%

60%

80%

100%

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

Local Synch – Execution Time

FAM SLM SPM SPMBO SS SSBO TBEX UTS AVG

16

TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

 GD GH DD DD+RO DH

0%

20%

40%

60%

80%

100%

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

Local Synch – Execution Time

FAM SLM SPM SPMBO SS SSBO TBEX UTS AVG

17

TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

DeNovo-RO+DRF reduces gap by not invalidating read-only data

 GD GH DD DD+RO DH

0%

20%

40%

60%

80%

100%

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

Local Synch – Execution Time

FAM SLM SPM SPMBO SS SSBO TBEX UTS AVG

18

TB

GPU+HRF is much better than GPU+DRF with local synch [ASPLOS ’14]

DeNovo+DRF comparable to GPU+HRF, but simpler consistency model

DeNovo-RO+DRF reduces gap by not invalidating read-only data

DeNovo+HRF is best, if consistency complexity acceptable

 GD GH DD DD+RO DH

0%

20%

40%

60%

80%

100%

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

G
D

G
H

D
D

D
D

+
R

O
D

H
G

D
G

H
D

D
D

D
+

R
O

D
H

N/W L2 $ L1 D$ Scratch GPU Core+

Local Synch – Energy

Energy trends similar to execution time
19

FAM SLM SPM SPMBO SS SSBO TBEX UTS AVG TB

• Emerging heterogeneous apps use fine-grained synch

– GPU coherence + DRF: inefficient, but simple memory model

– GPU coherence + HRF: efficient, but complex memory model

– DeNovo + DRF: efficient AND simple memory model

complex

consistency

models!

Conclusions

20

Do GPU models (HRF) need to be more complex than CPU models (DRF)?

