An integrated concurrency and core-
ISA architectural envelope definition,
and test oracle, for IBM POWER

multiprocessors

Kathryn E. Gray'  Gabriel Kerneis'*  Dominic Mulligan’
Christopher Pulte’ Susmit Sarkar? Peter Sewell’

T University of Cambridge '*During work 2 University of St Andrews



What Is an architecture spec?



What Is an architecture spec?

Typically prose



What Is an architecture spec?

Typically prose




What Is an architecture spec?

ST Y D
L e Z a4 2 ;

Z £ s ‘ 76 A B

z o~ -/

e 4
& . T L
24 72
# £
e o

Typically prose

Sometimes pseudocode



What Is an architecture spec?

Typically prose

Sometimes pseudocode

Version 2.06

Branch I-form Branch Conditional B-form
b target_addr (AA=0 LK=0) bc BO,Bl target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bl BO,Bl,target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl,target_addr (AA=1 LK=1)

18 Ll AA|LK 16 BO Bl BD AA[LK
o 3 30 | 31 o 6 11 16 30|31
if AA then NIA €., EXTS(LI || 0b00) if (64-bit mode)
else NIA €;., CIA + EXTS(LI || 0b00) then M € 0
if LK then LR €;., CIA + 4 else M € 32

i if —IBO, then CTR € CIR - 1

target_addr specifies the branch target address. ctr_ok ¢ BO, | ((CTRy,gs # 0) @ BO,)

If AA=0 then the branch target address is the sum of
LI 11 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI 11 0b0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

cond_ok ¢ BOy | (CRgr.3; = BO;)
if ctr_ok & cond_ok then

if AA then NIA ¢, EXTS(BD || 0b00)

else NIA €;., CIA + EXTS(BD || 0b00)
if LK then LR €;., CIA + 4

iea
BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 42. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD 11 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD I 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-

lowing the Branch instruction is placed into the Link

Register.

Special Registers Altered:
CTR (if BO»=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:
bit target bec 12,0,target
bne cr2,target bc 4,10,target

bdnz target bc 16,0,target



But ...



But

e Notexecutable test oracles

* You can’t test h/w or s/w against prose



But

* Not executable test oracles
* You can’t test h/w or s/w against prose
e Nota clear guide to concurrent behaviour

e Especially for weakly consistent IBM Power and ARM



But

* Not executable test oracles
* You can’t test h/w or s/w against prose
e Nota clear guide to concurrent behaviour
e Especially for weakly consistent IBM Power and ARM

e A mass of instruction set detall



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

e Executable as test oracle



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

e Executable as test oracle

 Mathematically precise



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

e Executable as test oracle
 Mathematically precise

* Related to vendor pseudocode and intuition



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

 Executable as test oracle
 Mathematically precise
* Related to vendor pseudocode and intuition

» Clarity interface between ISA and concurrency



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

Specifically IBM POWER
all non-FP non-vector "user’ ISA (153 instructions)
and concurrency model



Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

Specifically IBM POWER
all non-FP non-vector "user’ ISA (153 instructions)
and concurrency model

Applicable to ARM as well
See Modelling the ARMv8 Architecture, Operationally
Concurrency and ISA, POPL16



Not just an emulator



Not just an emulator

Emulator PPCMEM?2



Not just an emulator

Emulator PPCMEM?2

Written in C etc

A language with many faults
Intermingling of emulation detall
& semantics



Not just an emulator

Emulator PPCMEM?2

Written in C etc Written in Lem & Salil
A language with many faults Languages for logic,
Intermingling of emulation detall mathematics, and ISAs
& semantics

Only spec detall
Emulation separated



Not just an emulator

Emulator PPCMEM?2

Running concurrent code:
Consider a lock



Not just an emulator

Emulator PPCMEM?2

11 Lock

T1 Set critical section
T1 Unlock

T2 Lock

repeat
Running concurrent code:

Consider a lock



NOt

Emulator
T1 Lock

A

A

12 Lock

repeat

Set critical section
Unlock

juS

t an emulator

PPCMEMZ2

0 i

init1W spin_Tock_unlocked/5=0|

engiS L DAXR W, IX0]
[Fow cvent: RXA spin_lock_umlocked/4
RXA spin_lock_unlocked/d = 7

16:ADD W2, W1, #16.LSL 12

R0
{7:STXR W3, W2, [X0]

Rofo- enq35:LDAXR W1 [X0]

[ RXA spin_Jock_unlocked/d
Rl

136:ADD W2 W1 716, LSL 12

TTTSTXR W3, W2, [X0]

SiFlow cvent: WX spin_Jock_unlocked 4=000010000

R4[0-65 R spin_Tock_unlocked 4=0x000 10000
®:

RN VRO
——

Rs

R30[0-
Re[0-63]
(063]
IRCBNZ W, exit
eaet) | poorosa)
DEOR W2, W1, WI,ROR 416
RAI0B 006
l RO[0-63
0.CBZ W2, 0ut
jolo-¢
b6
*0
ST LDAXRH W, [X0] R’
GMermory ead request from sorsge RXA spin_Jock_unlock il 2RET,
Ro[0-63)
RO[0-63 Re | RS
EOR WAL LR A1 s ||

I55STR X5. X4

Reorder events: mW crivS=1 and hWX spin_lock_unlocked 3=0x00010000

114CBNZ W2, exit

Rs{0-63}
R30 RS
outilSRET 127:CBNZ W, error
R | RS

28:BL unlock
R0

ermor29:MOV WIS, 11

H6STR X5, [X4] Ris

W crivs=1

)

156LDR X5, X4]

3 Memory read request from storsge R crivs

IST.CBZ WS, error

iSSBLunlock | |emoriS:MOV WIS, #1
R0 RIS

~

RO

unlocki60-LDRH W1 [X0]

n
g0 DRV (X0)
p—

5. (X4

—

ory reaiflia

Memory read request from storage R spin_lock_unlocked’2

~N
BT |
y }

(

R spin_Tock_unlocked?]
A W J

131:ADD W1 W1 #1

Running concurrent
Consider a loc

HECBNZ W:

RO
19BLunlock| | error:20:MOV WIS, #1

132:STLRH WL [X0]

R30 RIS
RO
33BLexit
unlock:i21:LDRH W1, [X0]
R30

122:ADD W1, W1, 41

RO
123:STLRH WL [X0]

i24:BLexit
R0

l

161:ADD W1 W1, 1

RO
162STLRH WL [X0]

i63BLexit
R30



Beneficlaries

Compiler writers
Concurrency primitive implementors
Security developers

Hardware developers



ISA model

Power 2.06B
Framemaker

+ Framemaker export

Litmus frontend

Power 2.06B

XML

Binary frontend

‘parse, analyse, patch

Power 2.06B
Sail

¢ Sail typecheck

Power 2.06B
Lem (Sail AST)

Sail interpreter——-
Lem

\ Y
- OCami Lem
Concurrency model Harness

Text Ul
Web Ul

Storage
semantics
Lem = System
semantics
Thread - Lem
semantics
Lem

OCaml, CSS, JS




Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0 6 11 16 31

EA ¢« (RA) + EXTS(D)
MEM(EA, 4) < (RS)35.63
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30-63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

union ast member (bit[5], bit[5], bit[16]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA :
(bit[16]) D as instr) =
Stwu (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0] 6 11 16 31

EA < (RA) + EXTS(D)
MEM(EA, 4) € (RS)35.¢3
RA ¢« EA

Let the effective address (EA) be the sum*(RA)+ D.
(RS)30-63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None



Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0 6 11 16 31

EA ¢ (RA) + EXTS(D)
MEM(EA, 4) € (RS)359.43
RA < EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30.63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

union ast member (bit[5], bit[5], bit[16]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA :
(bit[16]) D as instr) =
Stwu (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sample Instruction

union ast member (bit[5], bit[5], bit[1l6]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA
(bit[16]) D as instr) =

Stwu,. (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sail:
for specifying concurrent ISAs

- C-like/ISA Pseudo-code like imperative language with
Built-in understanding of registers and memory
- Type inference, including vector-size checking
Formal interpreter
Executable for sequential or concurrent exploration

- Analyses instructions for register/memory footprint



ISA model

Power 2.06B
Framemaker

+ Framemaker export

Litmus frontend

Power 2.06B

XML

Binary frontend

‘parse, analyse, patch

Power 2.06B
Sail

¢ Sail typecheck

Power 2.06B
Lem (Sail AST)

Sail interpreter——-
Lem

\ Y
- OCami Lem
Concurrency model Harness

Text Ul
Web Ul

Storage
semantics
Lem = System
semantics
Thread - Lem
semantics
Lem

OCaml, CSS, JS




Power 2.06B

Framemaker

+ Framemaker export

Litmus parser
- OCaml

Power 2.06B
XML

ELFI

‘parse, analyse, patch

Power 2.06B
Salil

¢ Sail typecheck

Power 2.06B
Lem (Sail AST) el

Sail interpreter=—-
Lem

Concurrency model

Storage
semantics
Lem = System
semantics
Thread - Lem
semantics
Lem

Ha




ISA + Concurrency Challenges

- No single program point
 No per-thread register state
- Register shadowing effects

- and more



No Per-thread register state

MP+sync+rs POWER
Thread O Thread 1
stw r7,0(r1)  # x=1 lwz r5,0(r2)  # rb=y
sync # sync mr r6,r5 #ro=r5
stw r8,0(r2) # y=1 lwz r5,0(r1)  # r5=x

Initial state: 0:r1=x, 0:r2=y, 0:ir7=1,
0:r8=1, 1:r1=x, 1:r2=y, x=0
Allowed: 1:r6=1, 1:r5=0




ISA model

Power 2.06B
Framemaker

Framemaker export

Litmus frontend

Power 2.06B

XML

Binary frontend

‘parse, analyse, patch

Power 2.06B
Sail

¢ Sail typecheck

Power 2.06B
Lem (Sail AST)

Sail interpreter—=—-
Lem

Y J
- OCam| Lem
Concurrency model Harness

Storage
semantics
Lem = System
semantics
Thread = Lem
semantics
Lem

Text Ul
Web Ul

OCaml, CSS, JS




_ |

analyse, paieh Concurrency model Ha
2.06B
al Storage
pecheck semantics
q Lem = System
a%A(\)S6T) 2 semantics
Thread = Lem
semantics exe

lerpreter=—r—- Lem
>M




_ |

analyse, paten Concurrency model Ha
2.06B

al Storage
pecheck semantics

5 068 Lem = System

ail AST) L1 semantics

Thread = Lem
semantics EXe

[ErPrete [ mtm—t— Lem

2M
Maintains tree of in-tflight
'nstruct'oy




_ |

analyse, patch

2.06B

all

pecheck

2.06B
all AST) el

lerpreter=—r—-
>M

Maintains tree of in-tflight
Instructions

"

Concurrency m

Storage

semantic
Lem

Thread

semantics
Lem

Abstraction of cache
hierarchies and protocols,
store buffers, etc

System

semantics
Lem

Ha

exe




ISA model

Power 2.06B
Framemaker

+ Framemaker export

Litmus frontend

Power 2.06B

XML

Binary frontend

‘parse, analyse, patch

Power 2.06B
Sail

¢ Sail typecheck

Power 2.06B
Lem (Sail AST)

Sail interpreter——-
Lem

\ Y
- OCami Lem
Concurrency model Harness

Text Ul
Web Ul

Storage
semantics
Lem = System
semantics
Thread - Lem
semantics
Lem

OCaml, CSS, JS




Litmus parser
OCaml

Y

ELF model

Lem

oncurrency model

Storage
mantics
Lem = System
semantics
Thread = Lem
mantics

Lem

Harness

Text Ul
Web Ul

OCaml, CSS, JS




O

POWER Memory Model

'E. [ -~ l@ www.cl.cam.ac.uk/users/sf502 /pldill/index.html

¢ | Reader j [2]

Humor~¥ Films~¥ Food ¥

UK~

Comp ¥ Teaching™¥ misc~™

POWER Memory Model

PPC MP+sync+ctrl

"SyncdWW Rfe DpCtrldR Fre"
Cycle=Rfe DpCtrldR Fre SyncdWW

{

0:r2=x; O:rd=y;
l:r2=y; l:rd=x;
}

PO

1i rl1,1

stw rl,0(r2)
sync

1i r3,1

stw r3,0(rd)
exists

(L:xr1l=1 /\ 1l:r3=

Pl

lwz rl,0(r2)
cmpw rl,rl
beg LCOO
LCO0O:

lwz r3,0(rd)

0)

| Select POWER Test |

[

Select Options ]

[ Run Interactive




—System State

. Storage subsystem state:
writes seen = {W x/8=0, W y/8=0, W x/4=1}
coherence = (W x/8=0 -> W x/4=1}
: writes_past_coherence_point = {W x/8=0, W y/8=0}
events propagated to:
Thread 0: [W y/8=0 [0-7], W x/8=0 [0-7], W x/4=1 [0-3], Sync ]
Thread 1: [W y/8=0 [0-7], W x/8=0 [0-7]]
2 Propagate write to thread: W x/4=1 [0-3] to Thread 1
unacknowledged Sync requests = {Sync }

——

. Thread 0 state:
' unacknowledged Syncs = {Sync }
old instructions
ioid: 4 loc: 0x0000000000050000 addi RT=1 RA=0 SI=1
ioid: 5 loc: Ox0000000000050004 stw RS=1 RA=2 D=0 mem writes: [W x/4=1]
new instructions

ioid: 6 loc: 0x0000000000050008 sync L=0
ioid: 7  loc: 0x000000000005000c addi RT=3 RA=0 SI=1
ioid: 8 loc: 0x0000000000050010 stw RS=3 RA=4 D=0 opcode: instruction kind: write
regs_in: {GPR4, GPR3[32..63]} regs_out: {} ioids_feeding_address: {} nias: {succ}
mem writes_read_from: [] committed_mem_writes: [] committed_barriers: []
reg_reads: []
reg_writes: [] committed: false finished: false micro_op_state: MOS_plain
| b = (GPR[4]);
| EA = (b + EXTS (64,D));
| MEMw(EA4) = ((GPR[to_num (RS)])[32 .. 63])
Env: D=0b0...0 [0..15], EA=0b0...0 [0..63], RA=0b00100 [0..4], RS=0b00011 [0..4], b=0b0...0 [0..63]
0 (0:8) Register read: GPR4 = y from initialstate of 0-63.y

. Thread 1 state:

' unacknowledged Syncs = {}
Initial fetch address: 0x0000000000051000 (from notional predecessor ioid 2)
1 (1:2) Fetch from address 0x0000000000051000 Iwz RT=1 RA=2 D=0

. Enabled transitions:
_0: (0:8) Register read: GPR4 = y from initialstate of 0-63:y
_1: (1:2) Fetch from address 0x0000000000051000 Iwz RT=1 RA=2 D=0
_2: Propagate write to thread: W x/4=1 [0-3] to Thread 1




Validation

Sequential single instruction

06983 tests of fixed-point user-mode instruction

Concurrent litmus tests

2175 tests run exhaustively
including those from prior concurrency models



Conclusions

Combined ISA and concurrency model for IBM POWER

Developed w.r.t existing h/w
& In consultation with architects

Usable as reference model for future h/w & s/w
Usable for verification

Relevant for ARM and future models

http:/www.cl.cam.ac.uk/~pes20/ppcmem?2/


http://www.cl.cam.ac.uk/~pes20/ppcmem2/

