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Version 2.06

Branch I-form Branch Conditional B-form
b target_addr (AA=0 LK=0) bc BO,Bl target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0) bca BO,Bl target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1) bl BO,Bl,target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1) bcla BO,Bl,target_addr (AA=1 LK=1)

18 Ll AA|LK 16 BO Bl BD AA[LK
o 3 30 | 31 o 6 11 16 30|31
if AA then NIA €., EXTS(LI || 0b00) if (64-bit mode)
else NIA €;., CIA + EXTS(LI || 0b00) then M € 0
if LK then LR €;., CIA + 4 else M € 32

i if —IBO, then CTR € CIR - 1

target_addr specifies the branch target address. ctr_ok ¢ BO, | ((CTRy,gs # 0) @ BO,)

If AA=0 then the branch target address is the sum of
LI 11 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI 11 0b0O sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

cond_ok ¢ BOy | (CRgr.3; = BO;)
if ctr_ok & cond_ok then

if AA then NIA ¢, EXTS(BD || 0b00)

else NIA €;., CIA + EXTS(BD || 0b00)
if LK then LR €;., CIA + 4

iea
BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 42. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD 11 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD I 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-

lowing the Branch instruction is placed into the Link

Register.

Special Registers Altered:
CTR (if BO»=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

Extended: Equivalent to:
bit target bec 12,0,target
bne cr2,target bc 4,10,target

bdnz target bc 16,0,target
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* Not executable test oracles
* You can’t test h/w or s/w against prose
e Nota clear guide to concurrent behaviour
e Especially for weakly consistent IBM Power and ARM

e A mass of instruction set detall
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 Mathematically precise
* Related to vendor pseudocode and intuition

» Clarity interface between ISA and concurrency
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Specification as Artefact

We (show how to) make
architecture specs that are real technical artetacts

Specifically IBM POWER
all non-FP non-vector "user’ ISA (153 instructions)
and concurrency model

Applicable to ARM as well
See Modelling the ARMv8 Architecture, Operationally
Concurrency and ISA, POPL16
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Not just an emulator

Emulator PPCMEM?2

Written in C etc Written in Lem & Salil
A language with many faults Languages for logic,
Intermingling of emulation detall mathematics, and ISAs
& semantics

Only spec detall
Emulation separated
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Not just an emulator

Emulator PPCMEM?2

11 Lock

T1 Set critical section
T1 Unlock

T2 Lock

repeat
Running concurrent code:

Consider a lock



NOt

Emulator
T1 Lock

A

A

12 Lock

repeat

Set critical section
Unlock

juS

t an emulator

PPCMEMZ2

0 i

init1W spin_Tock_unlocked/5=0|

engiS L DAXR W, IX0]
[Fow cvent: RXA spin_lock_umlocked/4
RXA spin_lock_unlocked/d = 7

16:ADD W2, W1, #16.LSL 12

R0
{7:STXR W3, W2, [X0]

Rofo- enq35:LDAXR W1 [X0]

[ RXA spin_Jock_unlocked/d
Rl

136:ADD W2 W1 716, LSL 12

TTTSTXR W3, W2, [X0]

SiFlow cvent: WX spin_Jock_unlocked 4=000010000

R4[0-65 R spin_Tock_unlocked 4=0x000 10000
®:

RN VRO
——

Rs

R30[0-
Re[0-63]
(063]
IRCBNZ W, exit
eaet) | poorosa)
DEOR W2, W1, WI,ROR 416
RAI0B 006
l RO[0-63
0.CBZ W2, 0ut
jolo-¢
b6
*0
ST LDAXRH W, [X0] R’
GMermory ead request from sorsge RXA spin_Jock_unlock il 2RET,
Ro[0-63)
RO[0-63 Re | RS
EOR WAL LR A1 s ||

I55STR X5. X4

Reorder events: mW crivS=1 and hWX spin_lock_unlocked 3=0x00010000

114CBNZ W2, exit

Rs{0-63}
R30 RS
outilSRET 127:CBNZ W, error
R | RS

28:BL unlock
R0

ermor29:MOV WIS, 11

H6STR X5, [X4] Ris

W crivs=1

)

156LDR X5, X4]

3 Memory read request from storsge R crivs

IST.CBZ WS, error

iSSBLunlock | |emoriS:MOV WIS, #1
R0 RIS

~

RO

unlocki60-LDRH W1 [X0]

n
g0 DRV (X0)
p—

5. (X4

—

ory reaiflia

Memory read request from storage R spin_lock_unlocked’2

~N
BT |
y }

(

R spin_Tock_unlocked?]
A W J

131:ADD W1 W1 #1

Running concurrent
Consider a loc

HECBNZ W:

RO
19BLunlock| | error:20:MOV WIS, #1

132:STLRH WL [X0]

R30 RIS
RO
33BLexit
unlock:i21:LDRH W1, [X0]
R30

122:ADD W1, W1, 41

RO
123:STLRH WL [X0]

i24:BLexit
R0

l

161:ADD W1 W1, 1

RO
162STLRH WL [X0]

i63BLexit
R30



Beneficlaries

Compiler writers
Concurrency primitive implementors
Security developers

Hardware developers



ISA model
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Framemaker
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Litmus frontend
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Binary frontend
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Sail interpreter——-
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Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0 6 11 16 31

EA ¢« (RA) + EXTS(D)
MEM(EA, 4) < (RS)35.63
RA ¢« EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30-63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

union ast member (bit[5], bit[5], bit[16]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA :
(bit[16]) D as instr) =
Stwu (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0] 6 11 16 31

EA < (RA) + EXTS(D)
MEM(EA, 4) € (RS)35.¢3
RA ¢« EA

Let the effective address (EA) be the sum*(RA)+ D.
(RS)30-63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None



Sample Instruction

Store Word with Update D-form
stwu RS,D(RA)

37 RS RA D
0 6 11 16 31

EA ¢ (RA) + EXTS(D)
MEM(EA, 4) € (RS)359.43
RA < EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)30.63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.
If RA=0, the instruction form is invalid.

Special Registers Altered:
None

union ast member (bit[5], bit[5], bit[16]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA :
(bit[16]) D as instr) =
Stwu (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sample Instruction

union ast member (bit[5], bit[5], bit[1l6]) Stwu

function clause decode (0b100101 :
(bit[5]) RS
(bit[5]) RA
(bit[16]) D as instr) =

Stwu,. (RS,RA,D)

function clause execute (Stwu (RS, RA, D)) = {
(bit[64]) EA := 0;

EA := GPR[RA] + EXTS(D);

GPR[RA] := EA;

MEMw(EA,4) := (GPR[RS])[32 .. 63]
}



Sail:
for specifying concurrent ISAs

- C-like/ISA Pseudo-code like imperative language with
Built-in understanding of registers and memory
- Type inference, including vector-size checking
Formal interpreter
Executable for sequential or concurrent exploration

- Analyses instructions for register/memory footprint
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Power 2.06B

Framemaker

+ Framemaker export

Litmus parser
- OCaml

Power 2.06B
XML
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‘parse, analyse, patch

Power 2.06B
Salil

¢ Sail typecheck

Power 2.06B
Lem (Sail AST) el

Sail interpreter=—-
Lem
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Storage
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Lem = System
semantics
Thread - Lem
semantics
Lem

Ha




ISA + Concurrency Challenges

- No single program point
 No per-thread register state
- Register shadowing effects

- and more



No Per-thread register state

MP+sync+rs POWER
Thread O Thread 1
stw r7,0(r1)  # x=1 lwz r5,0(r2)  # rb=y
sync # sync mr r6,r5 #ro=r5
stw r8,0(r2) # y=1 lwz r5,0(r1)  # r5=x

Initial state: 0:r1=x, 0:r2=y, 0:ir7=1,
0:r8=1, 1:r1=x, 1:r2=y, x=0
Allowed: 1:r6=1, 1:r5=0
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analyse, paieh Concurrency model Ha
2.06B
al Storage
pecheck semantics
q Lem = System
a%A(\)S6T) 2 semantics
Thread = Lem
semantics exe

lerpreter=—r—- Lem
>M




_ |

analyse, paten Concurrency model Ha
2.06B

al Storage
pecheck semantics

5 068 Lem = System

ail AST) L1 semantics

Thread = Lem
semantics EXe

[ErPrete [ mtm—t— Lem

2M
Maintains tree of in-tflight
'nstruct'oy




_ |

analyse, patch

2.06B

all

pecheck

2.06B
all AST) el

lerpreter=—r—-
>M

Maintains tree of in-tflight
Instructions

"

Concurrency m

Storage

semantic
Lem

Thread

semantics
Lem

Abstraction of cache
hierarchies and protocols,
store buffers, etc

System

semantics
Lem

Ha

exe
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Litmus parser
OCaml
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POWER Memory Model

'E. [ -~ l@ www.cl.cam.ac.uk/users/sf502 /pldill/index.html

¢ | Reader j [2]

Humor~¥ Films~¥ Food ¥

UK~

Comp ¥ Teaching™¥ misc~™

POWER Memory Model

PPC MP+sync+ctrl

"SyncdWW Rfe DpCtrldR Fre"
Cycle=Rfe DpCtrldR Fre SyncdWW

{

0:r2=x; O:rd=y;
l:r2=y; l:rd=x;
}

PO

1i rl1,1

stw rl,0(r2)
sync

1i r3,1

stw r3,0(rd)
exists

(L:xr1l=1 /\ 1l:r3=

Pl

lwz rl,0(r2)
cmpw rl,rl
beg LCOO
LCO0O:

lwz r3,0(rd)

0)

| Select POWER Test |

[

Select Options ]

[ Run Interactive




—System State

. Storage subsystem state:
writes seen = {W x/8=0, W y/8=0, W x/4=1}
coherence = (W x/8=0 -> W x/4=1}
: writes_past_coherence_point = {W x/8=0, W y/8=0}
events propagated to:
Thread 0: [W y/8=0 [0-7], W x/8=0 [0-7], W x/4=1 [0-3], Sync ]
Thread 1: [W y/8=0 [0-7], W x/8=0 [0-7]]
2 Propagate write to thread: W x/4=1 [0-3] to Thread 1
unacknowledged Sync requests = {Sync }

——

. Thread 0 state:
' unacknowledged Syncs = {Sync }
old instructions
ioid: 4 loc: 0x0000000000050000 addi RT=1 RA=0 SI=1
ioid: 5 loc: Ox0000000000050004 stw RS=1 RA=2 D=0 mem writes: [W x/4=1]
new instructions

ioid: 6 loc: 0x0000000000050008 sync L=0
ioid: 7  loc: 0x000000000005000c addi RT=3 RA=0 SI=1
ioid: 8 loc: 0x0000000000050010 stw RS=3 RA=4 D=0 opcode: instruction kind: write
regs_in: {GPR4, GPR3[32..63]} regs_out: {} ioids_feeding_address: {} nias: {succ}
mem writes_read_from: [] committed_mem_writes: [] committed_barriers: []
reg_reads: []
reg_writes: [] committed: false finished: false micro_op_state: MOS_plain
| b = (GPR[4]);
| EA = (b + EXTS (64,D));
| MEMw(EA4) = ((GPR[to_num (RS)])[32 .. 63])
Env: D=0b0...0 [0..15], EA=0b0...0 [0..63], RA=0b00100 [0..4], RS=0b00011 [0..4], b=0b0...0 [0..63]
0 (0:8) Register read: GPR4 = y from initialstate of 0-63.y

. Thread 1 state:

' unacknowledged Syncs = {}
Initial fetch address: 0x0000000000051000 (from notional predecessor ioid 2)
1 (1:2) Fetch from address 0x0000000000051000 Iwz RT=1 RA=2 D=0

. Enabled transitions:
_0: (0:8) Register read: GPR4 = y from initialstate of 0-63:y
_1: (1:2) Fetch from address 0x0000000000051000 Iwz RT=1 RA=2 D=0
_2: Propagate write to thread: W x/4=1 [0-3] to Thread 1




Validation

Sequential single instruction

06983 tests of fixed-point user-mode instruction

Concurrent litmus tests

2175 tests run exhaustively
including those from prior concurrency models



Conclusions

Combined ISA and concurrency model for IBM POWER

Developed w.r.t existing h/w
& In consultation with architects

Usable as reference model for future h/w & s/w
Usable for verification

Relevant for ARM and future models

http:/www.cl.cam.ac.uk/~pes20/ppcmem?2/


http://www.cl.cam.ac.uk/~pes20/ppcmem2/

