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Branch I-form

b target_addr (AA=0 LK=0)
ba target_addr (AA=1 LK=0)
bl target_addr (AA=0 LK=1)
bla target_addr (AA=1 LK=1)

if AA then NIA Iiea EXTS(LI || 0b00)
else       NIA Iiea CIA + EXTS(LI || 0b00)
if LK then LR Iiea CIA + 4

target_addr specifies the branch target address.

If AA=0 then the branch target address is the sum of
LI || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
LI || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
LR (if LK=1)

Branch Conditional B-form

bc BO,BI,target_addr (AA=0 LK=0)
bca BO,BI,target_addr (AA=1 LK=0)
bcl BO,BI,target_addr (AA=0 LK=1)
bcla BO,BI,target_addr (AA=1 LK=1)

if (64-bit mode)
  then M I 0
  else M I 32
if ¬BO2 then CTR I CTR - 1
ctr_ok I BO2 | ((CTRM:63 ≠ 0) ⊕ BO3)
cond_ok I BO0 | (CRBI+32 ≡ BO1)
if ctr_ok & cond_ok then
  if AA then NIA Iiea EXTS(BD || 0b00)
  else       NIA Iiea CIA + EXTS(BD || 0b00)
if LK then LR Iiea CIA + 4

BI+32 specifies the Condition Register bit to be tested.
The BO field is used to resolve the branch as described
in Figure 42. target_addr specifies the branch target
address.

If AA=0 then the branch target address is the sum of
BD || 0b00 sign-extended and the address of this
instruction, with the high-order 32 bits of the branch tar-
get address set to 0 in 32-bit mode.

If AA=1 then the branch target address is the value
BD || 0b00 sign-extended, with the high-order 32 bits of
the branch target address set to 0 in 32-bit mode.

If LK=1 then the effective address of the instruction fol-
lowing the Branch instruction is placed into the Link
Register.

Special Registers Altered:
CTR (if BO2=0)
LR (if LK=1)

Extended Mnemonics:

Examples of extended mnemonics for Branch Condi-
tional:

18 LI AA LK
0 6 30 31

16 BO BI BD AA LK
0 6 11 16 30 31

Extended: Equivalent to:
blt target bc 12,0,target
bne cr2,target bc 4,10,target
bdnz target bc 16,0,target

Sometimes pseudocode
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• Especially for weakly consistent IBM Power and ARM
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• Executable as test oracle 

• Mathematically precise 

• Related to vendor pseudocode and intuition 

• Clarify interface between ISA and concurrency

We (show how to) make  
architecture specs that are real technical artefacts
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Specification as Artefact
We (show how to) make  

architecture specs that are real technical artefacts

Specifically IBM POWER  
 all non-FP non-vector "user" ISA (153 instructions) 
 and concurrency model

Applicable to ARM as well 
 See Modelling the ARMv8 Architecture, Operationally 
  Concurrency and ISA, POPL16
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T1 Lock 
T1 Set critical section 
T1 Unlock 
T2 Lock 
… 
!
repeat

Not just an emulator
Emulator PPCMEM2

Running concurrent code: 
Consider a lock

Test SPINLOCK_UNROLL

init0:W crit/8=0
init1:W spin_lock_unlocked/8=0

R0
enq:i35:LDAXR W1, [X0]

g:RXA spin_lock_unlocked/4 = 0
R1

rf[0-3,0,0]

R0 R2
i37:STXR W3, W2, [X0]

5:Flow event: h:WX spin_lock_unlocked/4=0x00010000
h:WX spin_lock_unlocked/4=0x00010000

R3

co

R4 R5
i55:STR X5, [X4]

6:Reorder events: m:W crit/8=1 and h:WX spin_lock_unlocked/4=0x00010000
m:W crit/8=1

co

Thread 0

i4:BL enq
R30

R0
enq:i5:LDAXR W1, [X0]

4:Flow event: RXA spin_lock_unlocked/4
RXA spin_lock_unlocked/4 = ?

R1

R0[0-63]

R0 R2
i7:STXR W3, W2, [X0]

a:WX spin_lock_unlocked/4=?
R3

R0[0-63]

R0
spin:i11:LDAXRH W3, [X0]

0:Memory read request from storage RXA spin_lock_unlocked/2
R3

R0[0-63]

R4 R5
i16:STR X5, [X4]

b:W crit/8=0

R5[0-63]
R4[0-63]

R4
i17:LDR X5, [X4]

R5

R4[0-63]

R0
unlock:i21:LDRH W1, [X0]

R1

R0[0-63]

R0 R1
i23:STLRH W1, [X0]

c:W.rel spin_lock_unlocked/2=?

R0[0-63] R4 R5
i25:STR X5, [X4]

d:W crit/8=0

R5[0-63]
R4[0-63]

R4
i26:LDR X5, [X4]

e:R crit/8 = 0
R5

R4[0-63]

R0
unlock:i30:LDRH W1, [X0]

1:Memory read request from storage R spin_lock_unlocked/2
R1

R0[0-63]

R0 R1
i32:STLRH W1, [X0]

f:W.rel spin_lock_unlocked/2=?

R0[0-63]

R30
out:i15:RET

R30[0-63]

R30
out:i12:RET

R30[0-63]

R1
i6:ADD W2, W1, #16, LSL #12

R2

R3
i8:CBNZ W3, exit

R1
i9:EOR W2, W1, W1, ROR #16

R2

R2
i10:CBZ W2, out

R1 R3
i13:EOR W2, W3, W1, LSR #16

R2

R2
i14:CBNZ W2, exit

R5
i18:CBNZ W5, error

i19:BL unlock
R30

error:i20:MOV W18, #1
R18

R1
i22:ADD W1, W1, #1

R1

i24:BL exit
R30

rf[0-7,0,0]

R5
i27:CBNZ W5, error

R5[0-63]

i28:BL unlock
R30

error:i29:MOV W18, #1
R18

R1
i31:ADD W1, W1, #1

R1

i33:BL exit
R30

Thread 1

i34:BL enq
R30

R0[0-63]

R0[0-63]

R5[0-63]R4[0-63]

R4
i56:LDR X5, [X4]

2:Memory read request from storage R crit/8
R5

R4[0-63]

R0
unlock:i60:LDRH W1, [X0]

3:Memory read request from storage R spin_lock_unlocked/2
R1

R0[0-63]

R0 R1
i62:STLRH W1, [X0]

n:W.rel spin_lock_unlocked/2=?

R0[0-63]

R30
out:i42:RET

R30[0-63]

R1
i36:ADD W2, W1, #16, LSL #12

R2

R1[0-63]

R1
i39:EOR W2, W1, W1, ROR #16

R2

R1[0-63]
R1[0-63]

R2[0-63]

R3
i38:CBNZ W3, exit

R3[0-63]

R2
i40:CBZ W2, out

R2[0-63]

R5
i57:CBZ W5, error

i58:BL unlock
R30

error:i59:MOV W18, #1
R18

R1
i61:ADD W1, W1, #1

R1

i63:BL exit
R30



Beneficiaries

• Compiler writers 

• Concurrency primitive implementors 

• Security developers 

• Hardware developers
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Figure 1: Overview

tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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Store Word   D-form

stw RS,D(RA) 

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word Indexed  X-form

stwx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update  D-form

stwu RS,D(RA) 

EA I (RA) + EXTS(D)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed  X-form

stwux RS,RA,RB 

EA I (RA) + (RB)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 RS RA D
0 6 11 16                                                    31

31 RS RA RB 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16                                                    31

31 RS RA RB 183 /
0 6 11 16 21 31

union ast member (bit[5], bit[5], bit[16]) Stwu!
!
function clause decode (0b100101 :!
                        (bit[5]) RS :!
                        (bit[5]) RA :!
                        (bit[16]) D as instr) =!
  Stwu (RS,RA,D)!
!
function clause execute (Stwu (RS, RA, D)) = {!
 (bit[64]) EA := 0;!
 EA := GPR[RA] + EXTS(D);!
 GPR[RA] := EA;!
 MEMw(EA,4) := (GPR[RS])[32 .. 63]!
}
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Store Word   D-form

stw RS,D(RA) 

if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

Special Registers Altered:
None

Store Word Indexed  X-form

stwx RS,RA,RB 

if RA = 0 then b I 0
else           b I (RA)
EA I b + (RB)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum
(RA|0)+ (RB). (RS)32:63 are stored into the word in stor-
age addressed by EA.

Special Registers Altered:
None

Store Word with Update  D-form

stwu RS,D(RA) 

EA I (RA) + EXTS(D)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

Store Word with Update Indexed  X-form

stwux RS,RA,RB 

EA I (RA) + (RB)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ (RB).
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

36 RS RA D
0 6 11 16                                                    31

31 RS RA RB 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16                                                    31

31 RS RA RB 183 /
0 6 11 16 21 31

union
!
function clause
                        
                        
                        
  Stwu (RS,RA,D)!
!
function clause
 (bit[64])
 EA 
 GPR[RA] 
 MEMw(EA,4) 
}
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if RA = 0 then b I 0
else           b I (RA)
EA I b + EXTS(D)
MEM(EA, 4) I (RS)32:63

Let the effective address (EA) be the sum (RA|0)+ D.
(RS)32:63 are stored into the word in storage addressed
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stwx RS,RA,RB 
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Let the effective address (EA) be the sum
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MEM(EA, 4) I (RS)32:63
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Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.
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Store Word with Update Indexed  X-form
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None

36 RS RA D
0 6 11 16                                                    31

31 RS RA RB 151 /
0 6 11 16 21 31

37 RS RA D
0 6 11 16                                                    31

31 RS RA RB 183 /
0 6 11 16 21 31

union ast member (bit[5], bit[5], bit[16]) Stwu!
!
function clause decode (0b100101 :!
                        (bit[5]) RS :!
                        (bit[5]) RA :!
                        (bit[16]) D as instr) =!
  Stwu (RS,RA,D)!
!
function clause execute (Stwu (RS, RA, D)) = {!
 (bit[64]) EA := 0;!
 EA := GPR[RA] + EXTS(D);!
 GPR[RA] := EA;!
 MEMw(EA,4) := (GPR[RS])[32 .. 63]!
}



Sample Instruction
Store Word with Update  D-form

stwu RS,D(RA) 

EA I (RA) + EXTS(D)
MEM(EA, 4) I (RS)32:63
RA I EA

Let the effective address (EA) be the sum (RA)+ D.
(RS)32:63 are stored into the word in storage addressed
by EA.

EA is placed into register RA.

If RA=0, the instruction form is invalid.

Special Registers Altered:
None

37 RS RA D
0 6 11 16                                                    31

union ast member (bit[5], bit[5], bit[16]) Stwu!
!
function clause decode (0b100101 :!
                        (bit[5]) RS :!
                        (bit[5]) RA :!
                        (bit[16]) D as instr) =!
  Stwu (RS,RA,D)!
!
function clause execute (Stwu (RS, RA, D)) = {!
 (bit[64]) EA := 0;!
 EA := GPR[RA] + EXTS(D);!
 GPR[RA] := EA;!
 MEMw(EA,4) := (GPR[RS])[32 .. 63]!
}
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tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger



Power 2.06B
XML

Sail
Power 2.06B

Power 2.06B
Lem (Sail AST)

semantics
Thread

Lem

semantics
Storage

Lem

semantics
System

Lem

OCaml, CSS, JS

Text UI
Web UI

executions

Binary frontend

Harness

a.out

ELF model
Lem

Power 2.06B
Framemaker

Sail interpreter
Lem

Sail typecheck

parse, analyse, patch

ISA model Litmus frontend

OCaml
Litmus parser

Concurrency model

test.litmus

Framemaker export

Figure 1: Overview

tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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No Per-thread register state
MP+sync+rs POWER

Thread 0 Thread 1

stw r7,0(r1) # x=1 lwz r5,0(r2) # r5=y

sync # sync mr r6,r5 # r6=r5

stw r8,0(r2) # y=1 lwz r5,0(r1) # r5=x

Initial state: 0:r1=x, 0:r2=y, 0:r7=1,

0:r8=1, 1:r1=x, 1:r2=y, x=0

Allowed: 1:r6=1, 1:r5=0

This means that a sound model cannot simply have a per-
thread register state. Instead, when an instruction needs to
do a register read, we have to walk back through its program-
order (po) predecessors in the tree to find the most recent one
that has written to that register, and take the value from there.
We also have to check that there are no po-intervening in-
structions that might write to that register (and block until
otherwise if so), which means that we have to be able to pre-
calculate their register-write footprints.

Register self-reads A few instructions have pseudocode
that reads from one of their own register writes. To sim-
plify the definition of when register reads should block, we
rewrite them to use a local variable instead. This gives the
useful property that the register-read and register-write foot-
prints of an instruction can be calculated statically from its
opcode fields, and that it will dynamically read and write ex-
actly once to each element of those.

Dependencies and register granularity In POWER, de-
pendencies between instructions arising from register-to-
register dataflow are architecturally significant (shadow regis-
ters notwithstanding), as they guarantee local ordering prop-
erties that concurrent contexts can observe, and that are used
in idiomatic code. Address and data dependencies create lo-
cal ordering between memory reads and writes, while control
dependencies do so only in some circumstances (allowing im-
plementations to speculate branches but not observable value
speculation). Processor architectures typically have an more-
or-less elaborate structure of register names and aliases. For
example, POWER includes 32 64-bit general-purpose regis-
ters, GPR[0]..GPR[31] (denoted ri in assembly) and a 32-
bit condition register CR (with bits indexed 32..63) that is
partitioned into 4-bit subfields CR0..CR7; those bits are also
referred to with individual flag names LT, EQ, etc. All this
must be supported in the pseudocode, but the more important
semantic question is the architectural granularity of mixed-
size register accesses: a precise model has to define when
writing to one part of a register and reading from another con-
stitutes a dependency. The choice is observable in tests such
as MP+sync+addr-cr below: Thread 0 is just the same two
message-passing writes, while Thread 1 has a putative depen-
dency chain involving a write to CR3 followed by a read form
CR4. The final state of 1:r6=1, 1:r5=0 is observable in im-
plementations, and tells us that a sound architectural model
cannot treat CR as a single unit.

MP+sync+addr-cr POWER

Thread 0 Thread 1

stw r7,0(r1) # x=1 lwz r5,0(r2) # r5 = y

sync # sync mtocrf cr3,r5 # cr3 = 4 bits of r5

stw r8,0(r2) # y=1 mtocrf r6,cr4 # set 4 bits of r6 = cr4

xor r7,r6,r6 # r7 = r6 xor r6

lwzx r8,r1,r7 # r8 = *(&x + r7)

Initial state: 0:r1=x, 0:r2=y, 0:r7=1,

0:r8=1, 1:r1=x, 1:r2=y, x=0

Allowed: 1:r6=1, 1:r5=0

Related experiments show that dependencies through individ-
ual bits of CR are respected, as are dependencies through ad-
jacent bits of the same CRn field, so we could treat CR either
as a collection of 4-bit fields or as 32 1-bit fields. The ven-
dor documents are silent on this question, but the latter seems
preferable: it allows the most hardware implementation vari-
ation; we do not believe that code in the wild relies on false-
register-sharing dependencies (though of course it is hard to
be sure of this); and it is mathematically simplest. We follow
this choice for all register accesses, with a general definition
that assembles the value for a register read by reassembling
fragments of the most recent writes.

It is also important that interactions via the current instruc-
tion address (CIA) do not give rise to dependencies in the
model, as that would prevent out-of-order execution. The
POWER instruction descriptions read and write two pseu-
doregisters, CIA and NIA, which are not architected registers;
our thread model treats those specially.

Reading from uncommitted instructions For out-of-order
execution to work, we clearly have to let instructions read
from register writes of po-previous instructions that are not
yet finished, just as in implementations register values might
be forwarded from instructions before they are retired.

But we also have to let po-later instructions read from
the memory writes of earlier instructions in speculative paths.
The POWER architecture states that that writes are not per-
formed speculatively but, while speculative writes are never
visible to other threads, they can be forwarded locally to
program-order-later reads on the same thread. The PPOCA

variant of MP below shows that this forwarding is observable
to the programmer. Here f is address-dependent on e, which
reads from the write d, which is control-dependent on c. One
might expect that chain to prevent read f binding its value be-
fore c does, but in fact the write d can be forwarded directly
to e within the thread while d, e, and f are all still specula-
tive (before the branch of the control dependency on c is re-
solved). This is intended to be architecturally allowed and it
is observable in practice; it means that the model must expose
uncommitted writes to po-later instructions.

4
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tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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tails of any particular cache protocol and storage hier-
archy. Then there is a model for each hardware thread
that maintains a tree of in-flight and committed instruc-
tion instances, expressing the programmer-visible as-
pects of out-of-order and speculative computation; this
abstracts from pipeline and local store queue microar-
chitecture. Together these form an abstract machine
with a state and transitions.
That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
ducing Sail definitions of the decoding and instruction
behaviour, and auxiliary code to parse and pretty-print
instructions (§4). The vendor pseudocode is less consis-
tent than one might hope (unsurprisingly, as it has not
previously been mechanically parsed or type-checked),
so producing a precise Sail definition required dealing
with ad hoc variations and patching the results.

Extended Concurrency Model Scaling up the pre-
vious concurrency model of Sarkar et al. to this larger
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That model has been experimentally validated

against several generations of POWER implementations
(G5, 5, 6, 7, and 8), comparing the model behaviour
with that of production or pre-silicon hardware, on
hand-written litmus tests and on tests produced by the
diy tool of Alglave and Maranget [5], using the Litmus
test harness [6]. It has been validated intensionally by
extensive discussion with a senior IBM architect (clar-
ifying the intended concurrency model in the process);
it has been validated mathematically by using it in a
proof that C/C++11 concurrency [7] can be correctly
compiled to POWER [8, 4]; and the tool has been used
by Linux-kernel software developers [9]. This work (to-
gether with related research on axiomatic models [10])
has also discovered errata in a number of multiprocessor
implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
However, that previous model makes many major

simplifying assumptions. In particular, it includes only
a tiny fragment of the POWER instruction set, and
even that is given only an ad hoc semantics and only
at an assembly level; and it does not handle mixed-size
memory and register accesses. Effectively, it only de-
fines the architectural behaviour for simple litmus-test
programs, not of more general code.

1.3 Contribution
In this paper we show how a precise architectural en-

velope model for a weakly consistent architecture can
be defined, integrating a concurrency model (extending
that of [3]) with an architectural model for all of the
fixed-point non-vector user-mode instruction set. Do-
ing this in a way that achieves all the desirable proper-

ties mentioned above requires several new contributions,
which we summarise here and detail below.

Concurrency/ISA Model Interface The most fun-
damental question we address is what the interface be-
tween the concurrency model and ISA semantics should
be (§2). For a single-threaded processor one can regard
instructions simply as updating a global register and
memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.

Sail ISA Description Language Architecture de-
scriptions of instruction behaviour are traditionally ex-
pressed in a combination of prose and of pseudocode
that looks like it is written in a sequential imperative
language (of abstract micro-operations such as assign-
ments to registers, arithmetic operations, etc.). They
are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
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abstracts from pipeline and local store queue microar-
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implementations of POWER and ARM architectures,
both pre- and post-silicon (ARM concurrency is broadly
similar to POWER, though not identical).
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fines the architectural behaviour for simple litmus-test
programs, not of more general code.
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be (§2). For a single-threaded processor one can regard
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memory state. The same holds for a sequentially con-
sistent (SC) multiprocessor, and TSO multiprocessor
behaviour (as in x86 and Sparc) requires only the addi-
tion of per-thread store buffers. But for weakly consis-
tent multiprocessors such as IBM POWER and ARM,
some aspects of out-of-order and speculative execution,
and of the non-multi-copy atomic storage subsystem,
are exposed to the programmer; we cannot use a simple
state-update model for instructions. We explain this,
and discuss what is required instead, with a series of
concurrent POWER examples. There has been a great
deal of work on modelling weakly consistent processors,
e.g. [11, 12, 13, 14, 15, 16, 17, 18, 19], but none that we
are aware of deals with these issues with the interface
to the instruction semantics.
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language (of abstract micro-operations such as assign-
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are also relatively large, with hundreds-to-thousands of
pages of instruction description, and it is important that
they be accessible to practising engineers. To achieve
this, permitting instruction descriptions to be expressed
in that familiar imperative style while simultaneously
supporting the structure we need for integration with
the concurrency model, we introduce a new instruction
description language (IDL), Sail (§3). Sail has a pre-
cisely defined and expressive type system, using type
inference to check pseudocode consistency while keeping
instruction descriptions readable. It currently supports
a concrete syntax similar to the POWER pseudocode
language (front-ends tuned to other conventions are also
possible in future).

ISA Description Tied to Vendor Documentation
The vendor specification for the POWER architecture
is provided as a PDF document [20] produced from
Framemaker sources. To keep our ISA model closely
tied to that description, we took an XML version ex-
ported by Framemaker and wrote a tool that extracts
and analyses the instruction descriptions from it, pro-
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behaviour, and auxiliary code to parse and pretty-print
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tent than one might hope (unsurprisingly, as it has not
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Conclusions
Combined ISA and concurrency model for IBM POWER 
!
 Developed w.r.t existing h/w  
 & in consultation with architects 
!
 Usable as reference model for future h/w & s/w 
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 Usable for verification 
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Relevant for ARM and future models 
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