RUBIK: FAST ANALYTICAL POWER MANAGEMENT FOR LATENCY-CRITICAL SYSTEMS

HARSHAD KASTURE, DAVIDE BARTOLINI, NATHAN BECKMANN, DANIEL SANCHEZ

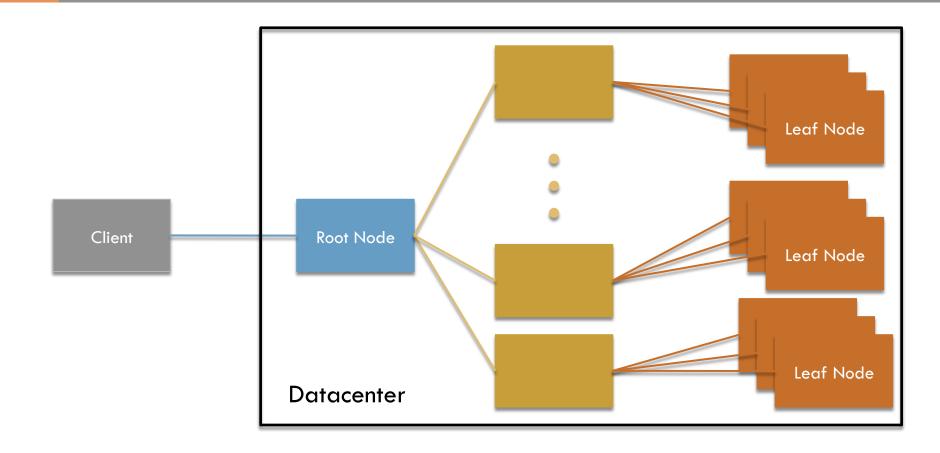
MICRO 2015

Massachusetts Institute of Technology

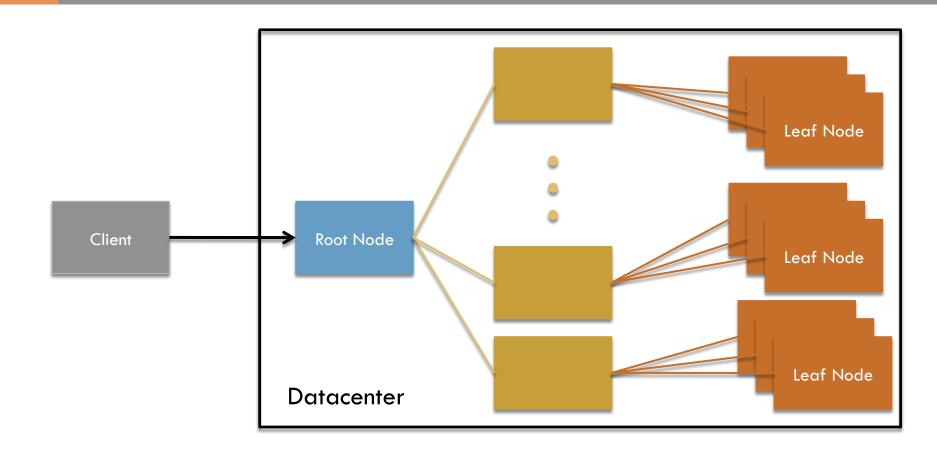
Motivation

- Low server utilization in today's datacenters results in resource and energy inefficiency
- Stringent latency requirements of user-facing services is a major contributing factor
- Power management for these services is challenging
 - Strict requirements on tail latency
 - Inherent variability in request arrival and service times
- Rubik uses statistical modeling to adapt to short-term variations
 - Respond to abrupt load changes
 - Improve power efficiency
 - Allow colocation of latency-critical and batch applications

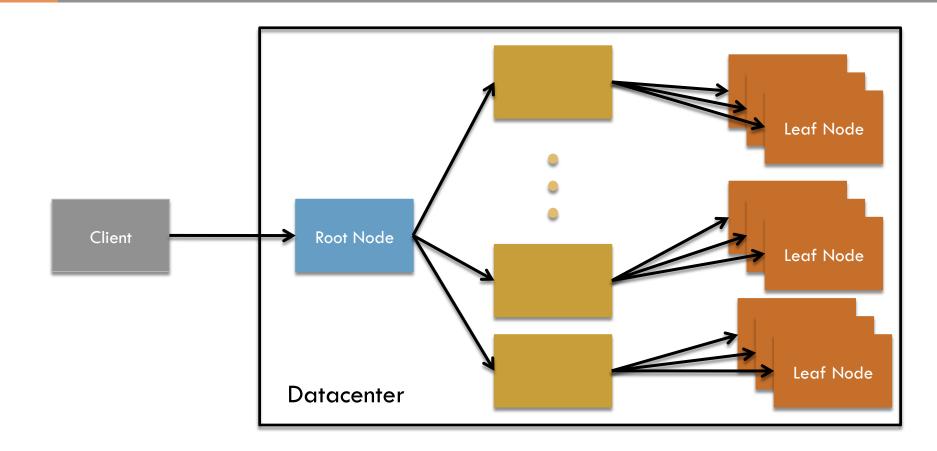
Understanding Latency-Critical Applications₃



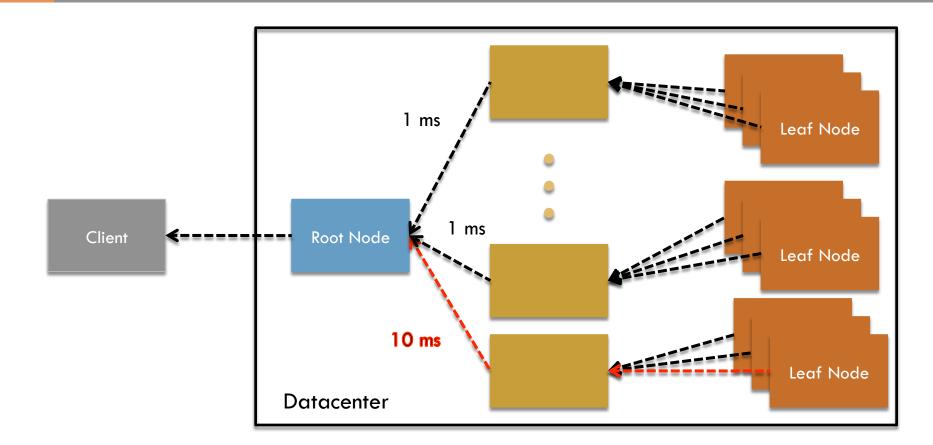
Understanding Latency-Critical Applications₄



Understanding Latency-Critical Applications 5



Understanding Latency-Critical Applications,



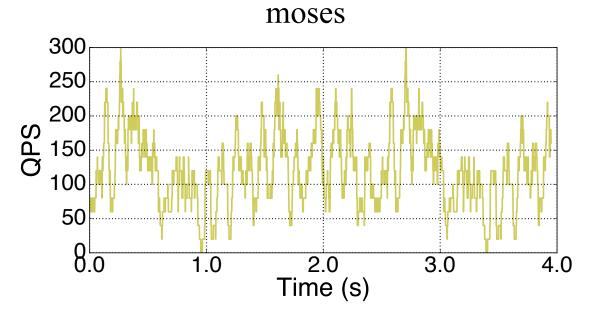
The few slowest responses determine user-perceived latency
Tail latency (e.g., 95th / 99th percentile), not mean latency, determines performance

Prior Schemes Fall Short

- Traditional DVFS schemes (cpufreq, TurboBoost...)
 - React to coarse grained metrics like processor utilization, oblivious to short-term performance requirements
- Power management for embedded systems (PACE, GRACE...)
 - Do not consider queuing
- Schemes designed specifically for latency-critical systems (PEGASUS [Lo ISCA'14], Adrenaline [Hsu HPCA'15])
 - Rely on application-specific heuristics
 - Too conservative

Insight 1: Short-Term Load Variations

Latency-critical applications have significant short-term load variations

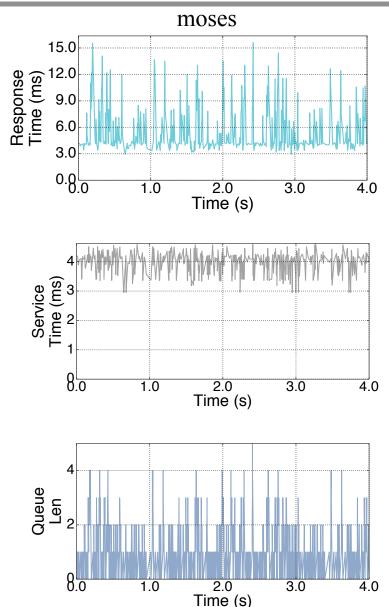


- PEGASUS [Lo ISCA'14] uses feedback control to adapt frequency setting to diurnal load variations
 - Deduce server load from observed request latency
 - Cannot adapt to short-term variations

Insight 2: Queuing Matters!

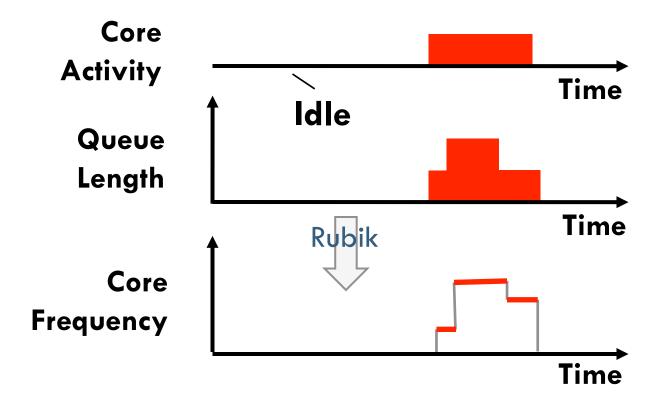
Tail latency is often determined by queuing, not the length of individual requests

- Adrenaline [Hsu HPCA'15] uses application-level hints to distinguish long requests from short ones
 - Long requests boosted (sped up)
 - Frequency settings must be conservative to handle queuing

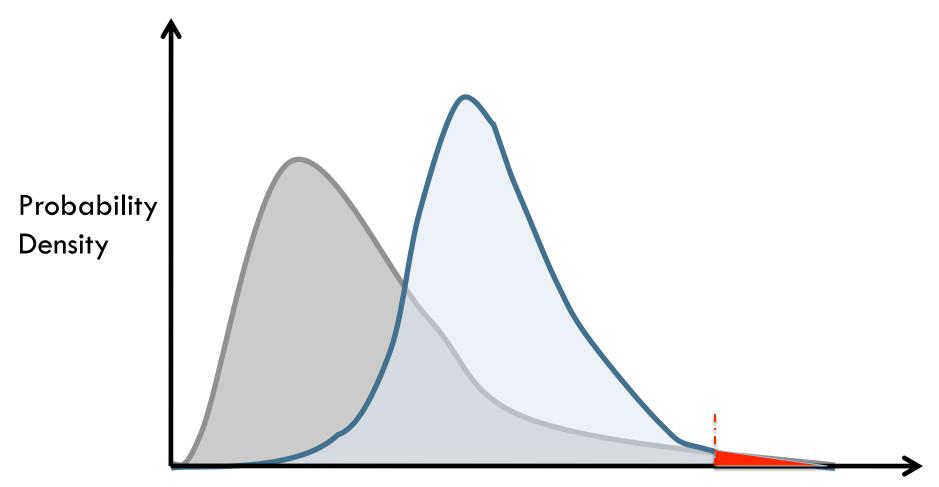


- Use queue length as a measure of instantaneous system load
- Update frequency whenever queue length changes

Adapt to short-term load variations



Goal: Reshaping Latency Distribution 11



Response Latency

Key Factors in Setting Frequencies

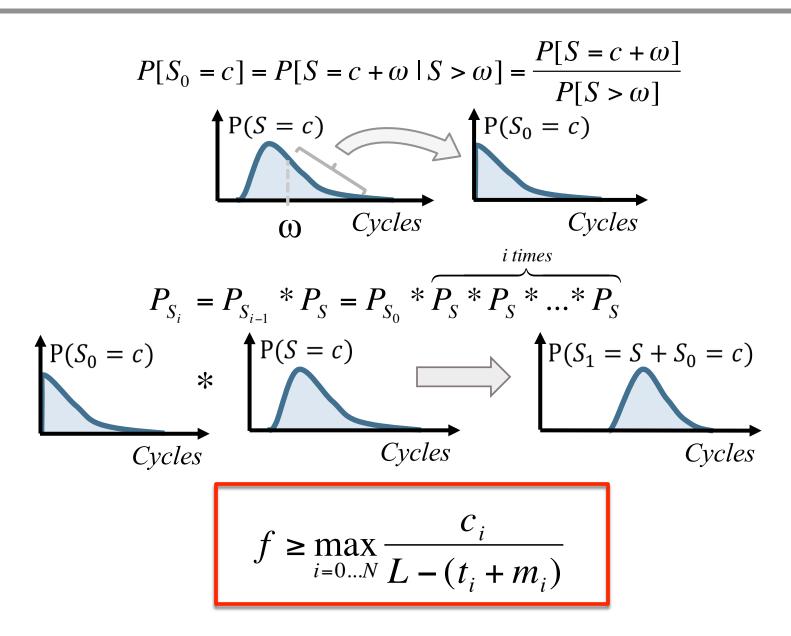
12

- Distribution of cycle requirements of individual requests

How long has a request spent in the queue?
Longer wait times → higher frequency

How many requests are queued waiting for service
Longer queues → higher frequency

There's Math!



Efficient Implementation

Pre-computed tables store most of the required quantities

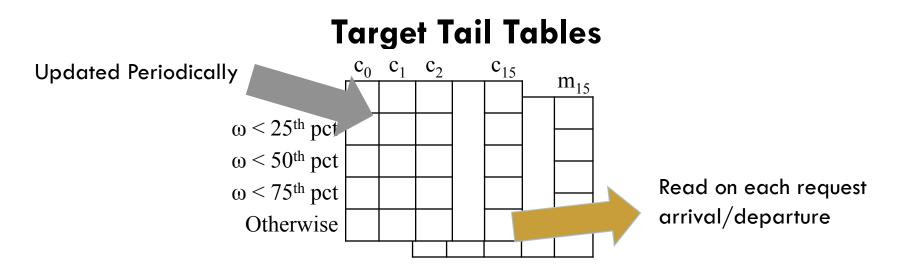


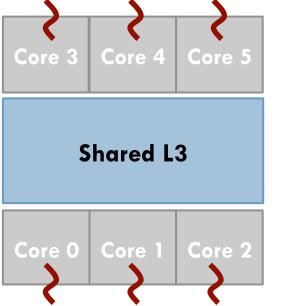
Table contents are independent of system load!

- Implemented as a software runtime
 - Hardware support: fast, per-core DVFS, performance counters for CPI stacks

Evaluation

Microarchitectural simulations using zsim

Power model tuned to a real system



Westmere-like OOO cores

- \circ Fast per-core DVFS
- CPI stack counters
- \circ Pin threads to cores

Compare Rubik against two oracular schemes:

- StaticOracle: Pick the lowest static frequency that meets latency targets for a given request trace
- AdrenalineOracle: Assume oracular knowledge of long and short requests, use offline training to pick frequencies for each

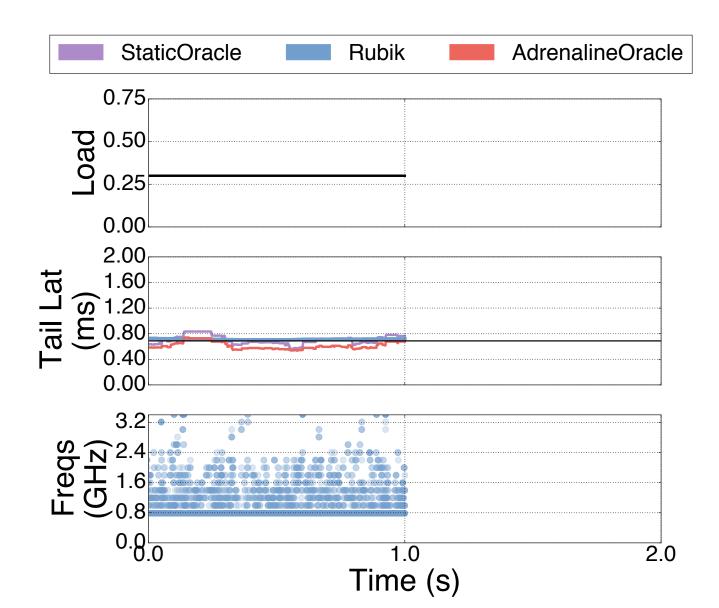
Evaluation

□ Five diverse latency-critical applications

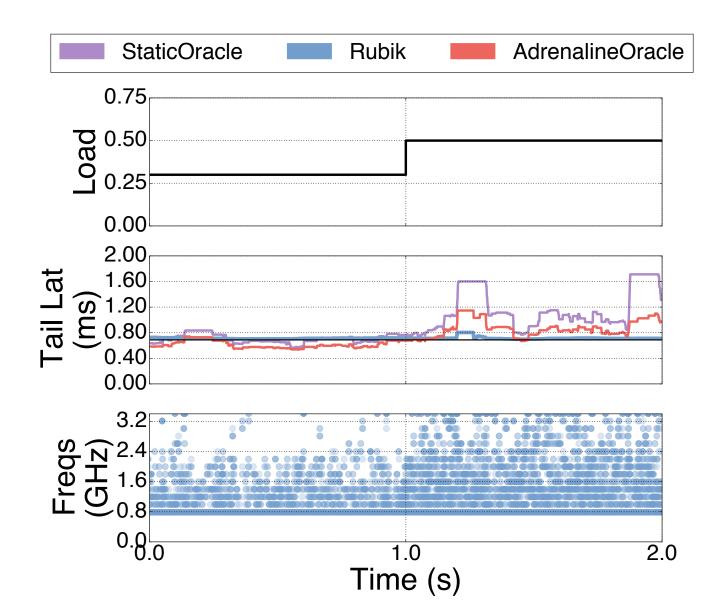
- xapian (search engine)
- masstree (in-memory key-value store)
- moses (statistical machine translation)
- shore-mt (OLTP)
- specjbb (java middleware)

For each application, latency target set at the tail latency achieved at nominal frequency (2.4 GHz) at 50% utilization

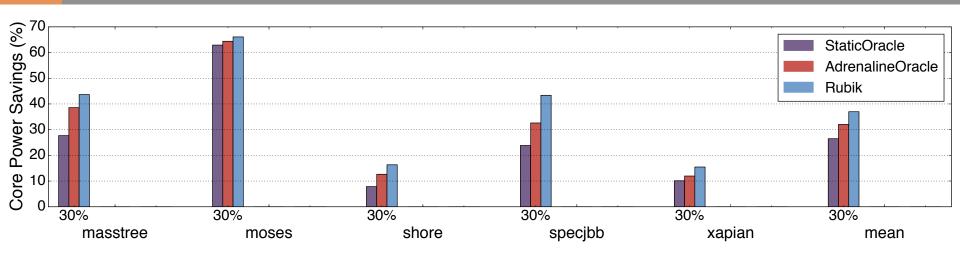
Tail Latency



Tail Latency

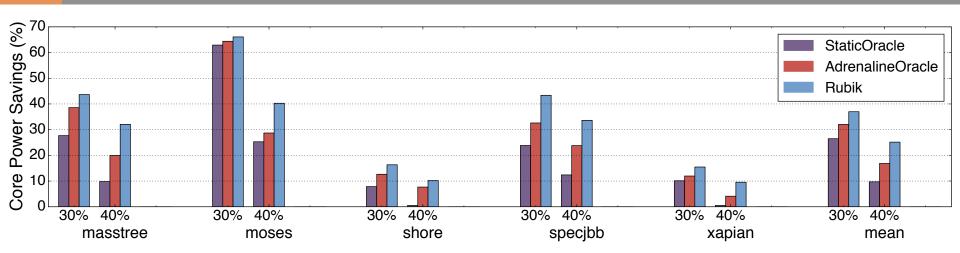


Core Power Savings



All three schemes save significant power at low utilization
Rubik performs best, reducing core power by up to 66%

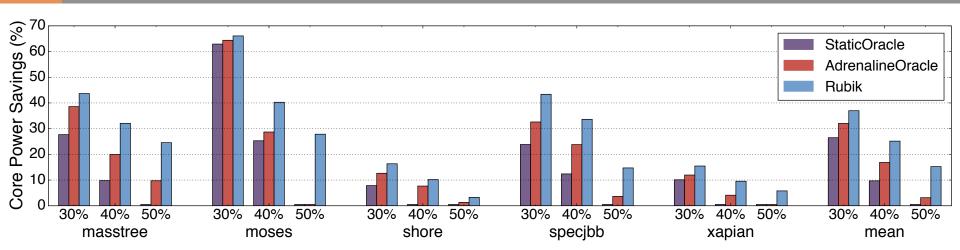
Core Power Savings



All three schemes save significant power at low utilization
Rubik performs best, reducing core power by up to 66%
Rubik's relative savings *increase* as short-term adaptation becomes more important

20

Core Power Savings



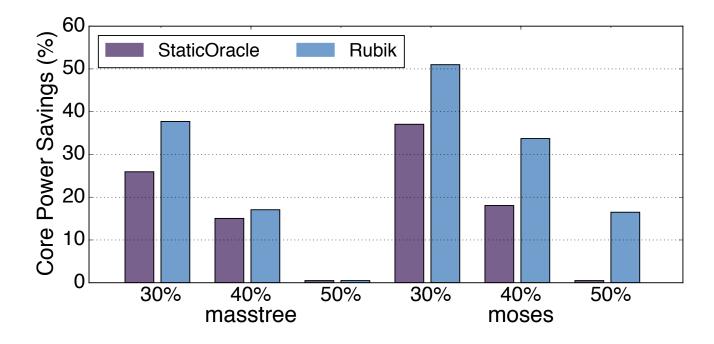
21

□ All three schemes save significant power at low utilization

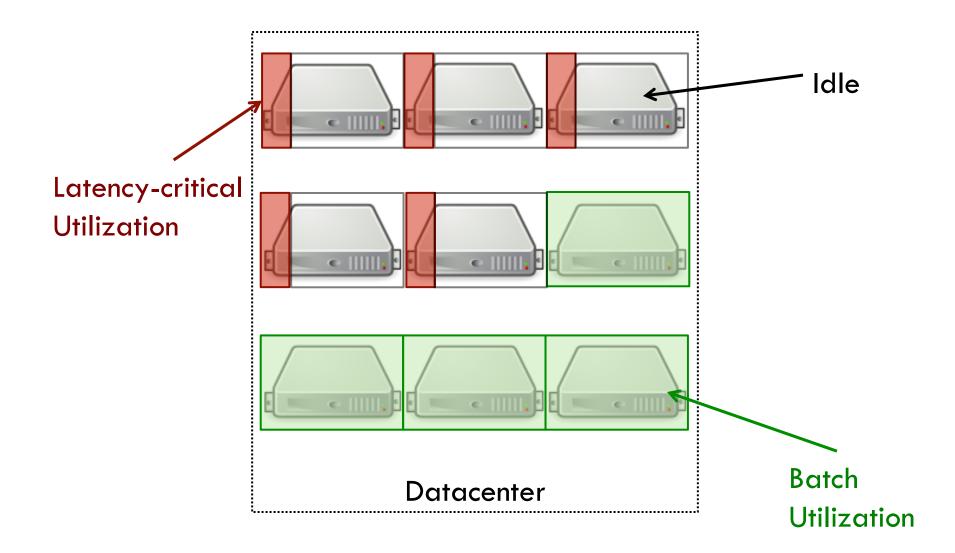
- Rubik performs best, reducing core power by up to 66%
- Rubik's relative savings increase as short-term adaptation becomes more important
- Rubik saves significant power even at high utilization
 - 17% on average, and up to 34%

Real Machine Power Savings

- V/F transition latencies of >100 µs even with integrated voltage controllers
 - Likely due to inefficiencies in firmware
- Rubik successfully adapts to higher V/F transition latencies

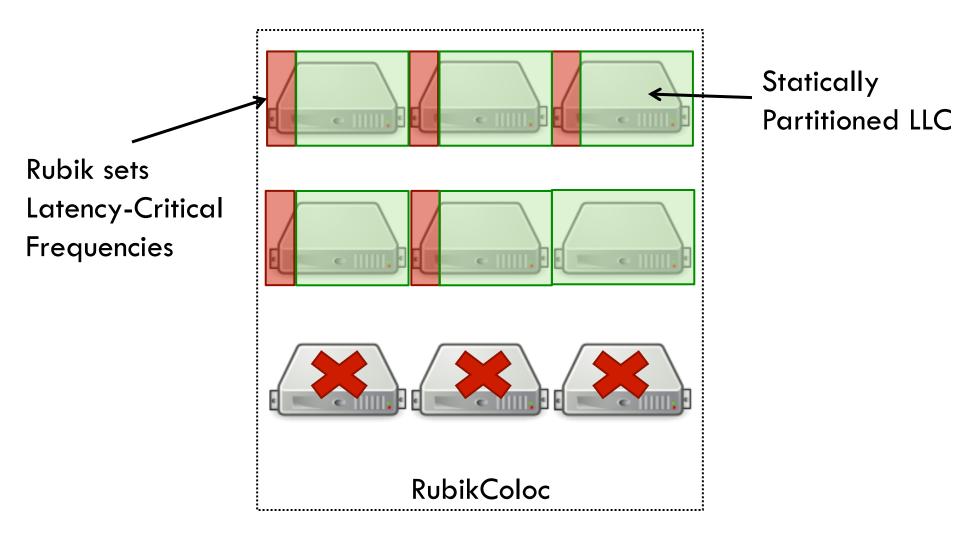


Static Power Limits Efficiency

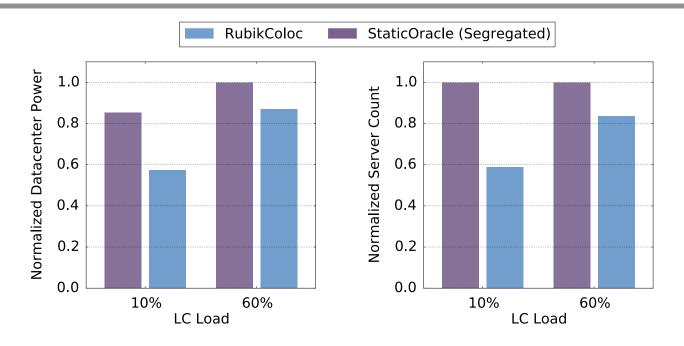


RubikColoc: Colocation Using Rubik

24



RubikColoc Savings



- RubikColoc saves significant power and resources over a segregated datacenter baseline
 - 17% reduction in datacenter power consumption; 19% fewer machines at high load
 - 31% reduction in datacenter power consumption, 41% fewer machines at high load

Conclusions

Rubik uses fine-grained power management to reduce active core power consumption by up to 66%

Rubik uses statistical modeling to account for various sources of uncertainty, and avoids application-specific heuristics

RubikColoc uses Rubik to colocate latency-critical and batch applications, reducing datacenter power consumption by up to 31% while using up to 41% fewer machines

THANKS FOR YOUR ATTENTION!

QUESTIONS?

