
DCS: A Fast and Scalable
Device-Centric Server Architecture

Jaehyung Ahn, Dongup Kwon, Youngsok Kim,
Mohammadamin Ajdari, Jaewon Lee, and Jangwoo Kim

{jh2ekd, nankdu7, elixir, majdari, spiegel0, jangwoo}@postech.ac.kr

High Performance Computing Lab
Pohang University of Science and Technology (POSTECH)

Inefficient device utilization

• Host-centric device management
− Host manages every device invocation

− Frequent host-involved layer crossings
 Increases latency and management cost

1

Userspace

Kernel

Hardware

Application

Device A Device B

Driver B
Kernel stack

Driver A
Kernel stack

Device C

Driver C
Kernel stack

Datapath Metadata/Command path

Latency: High software overhead

• Single sendfile: Storage read & NIC send
− Faster devices, more software overhead

2

Software overhead

La
te

nc
y

D
ec

om
po

si
tio

n
(N

or
m

al
iz

ed
)

7%

HDD
10Gb NIC

50%

NVMe
10Gb NIC

77%

PCM
10Gb NIC

82%

PCM
100Gb NIC

Software Storage NIC

0%

100%

Cost: High host resource demand

• Sendfile under host resource (CPU) contention
− Faster devices, more host resource consumption

3

Sendfile
bandwidth

100%

No contention

CPU Busy Sendfile bandwidth

*Measured from NVMe SSD/10Gb NIC

Sendfile
CPU usage

34%

High contention

Sendfile
bandwidth

14%
Sendfile

CPU usage
6%

Index

• Inefficient device utilization
• Limitations of existing solutions
• DCS: Device-Centric Server architecture
• Experimental results
• Conclusion

Limitations of existing work
• Single-device optimization
− Do not address inter-device communication

e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)

• Inter-device communication
− Not applicable for unsupported devices

e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)

• Integrating devices
− Custom devices and protocols, limited applicability

e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator – SSD+NIC)

Need for fast, scalable, and generic
inter-device communication

5

Index

• Inefficient device utilization
• Limitations of existing solutions
• DCS: Device-Centric Server architecture
− Key idea and benefits

− Design considerations

• Experimental results
• Conclusion

DCS Library Application

DCS Driver Device drivers & Kernel stacks

DCS: Key idea

• Minimize host involvement & data movement

7

Userspace

Kernel

Hardware

Datapath Metadata/Command path

Single command → Optimized multi-device invocation

Device CDevice BDevice A

DCS Engine

DCS: Benefits

• Better device performance
− Faster data delivery, lower total operation latency

• Better host performance/efficiency
− Resource/time spent for device management

now available for other applications

• High applicability
− Relies on existing drivers / kernel supports / interfaces
− Easy to extend and cover more devices

8

Index

• Inefficient device utilization
• Limitations of existing solutions
• DCS: Device-Centric Server architecture
− Key idea and benefits

− Design considerations
 By discussing implementation details

• Experimental results
• Conclusion

DCS: Architecture overview

10

Userspace

Kernel

Hardware

ApplicationDCS Library
sendfile(), encrypted sendfile()

DCS Driver

Command generator
Kernel communicator

DCS Engine (on NetFPGA NIC)
NVMe SSD

GPU

NetFPGA NIC

Fully compatible with existing system

Command
Queue

Command
interpreter

Per-device
manager

PCIe Switch

Drivers &
Kernel stack

Existing System

Communicating with storage

11

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

NVMe SSD
Target device

Block addr (in device) / buffer addr (cached)

VFS cache

Source device

File descriptor

Hook / API call

Data consistency guaranteed

Source device

Target

(Virtual) Filesystem

❶

❷
❸

❹

❺

Communicating with network interface

12

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Data buffer

Network stack
Connection information

NetFPGA NIC

Packet generation & Send HW PacketGen

Socket descriptor

Hook / API call

HW-assisted packet generation

❶

❷
❸

❹

❺

Communicating with accelerator

13

Userspace

Kernel

Hardware

ApplicationDCS Library

DCS Driver

DCS Engine

Memory

GPU

Memory allocation

GPU user library

GPU kernel driverGet memory mapping

DMA / NVMe transfer
Source device

Kernel invocation

Process data
(Kernel launch)

Call DCS library

Direct data loading without memcpy

❶
❷

❸❺

❻

❼

❹

Index

• Inefficient device utilization
• Limitations of existing solutions
• DCS: Device-Centric Server architecture
• Experimental results
• Conclusion

Experimental setup
• Host: Power-efficient system
− Core 2 Duo @ 2.00GHz, 2MB LLC
− 2GB DDR2 DRAM

• Device: Off-the-shelf emerging devices
− Storage: Samsung XS1715 NVMe SSD
− NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)
− Accelerator: NVIDIA Tesla K20m
− Device interconnect: Cyclone Microsystems PCIe2-2707

(Gen 2 switch, 5 slots, up to 80Gbps)

15

DCS prototype implementation
• Our 4-node DCS prototype

− Can support many devices per host

16

NVMe SSD

NetFPGA NIC

GPU

PCIe Switch

Reducing device utilization latency
• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings
− DCS: Batch management in HW layer

17

La
te

nc
y

(µ
s)

HW75

SW79

75

Host-centric DCS

DCS39

Reducing device utilization latency
• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings
− DCS: Batch management in HW layer

18

La
te

nc
y

(µ
s)

HW75

SW79

75

Host-centric DCS

DCS39

2x latency improvement
(with low-latency devices)

Host-centric DCS

La
te

nc
y

71% BW / CPU 11% busy

100% BW / CPU 29% busy

Host-independent performance
• Sendfile under host resource (CPU) contention
− Host-centric: host-dependent, high management cost
− DCS: host-independent, low management cost

CPU Busy
Sendfile bandwidth

Host-centric
DCS

100% BW / CPU 70% busy

13% BW / CPU 10% busy

No contention High contention

High performance even on weak hosts

Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)
− DCS provides much efficient data movement to GPU
− Current bottleneck is NIC (1Gbps)

20

Normalized processing time

68

62

6

Host-centric

DCS

32 6

6 6
Network send (1Gb)

14% reduction

GPU data loading GPU processing Network send NVIDIA driver

Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)
− DCS provides much efficient data movement to GPU
− Current bottleneck is NIC (1Gbps)

21

Normalized processing time

68

62

6

Host-centric

DCS

32 6

6 6
Network send (1Gb)

14% reduction13

12

Network send (10Gb)
38% reduction

GPU data loading GPU processing Network send NVIDIA driver

Real-world workload: Hadoop-grep
• Hadoop-grep (10GB)
− Faster input delivery & smaller host resource consumption

22

0
25
50
75

100
0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

Map progress Reduce progress

Host-centric
%

0
25
50
75

100 DCS
%

M
ap

/R
ed

uc
e

pr
og

re
ss

38% faster processing

Scalability: More devices per host
• Doubling # of devices in a single host

23

CPU Utilization 60%

Total device throughput
(N

orm
alized)

2x1.3x

Scalable many-device support
100% 22% 37%

Devices SSD
NIC

SSDx2
NICx2

SSD
NIC

SSDx2
NICx2

Host-centric DCS

Conclusion
• Device-Centric Server architecture
− Manages emerging devices on behalf of host
− Optimized data transfer and device control
− Easily extensible modularized design

• Real hardware prototype evaluation
− Device latency reduction: ~25%
− Host resource savings: ~61%
− Hadoop-grep speed improvement: ~38%

24

Thank you!

High Performance Computing Lab
Pohang University of Science and Technology (POSTECH)

Device latency reduction ~25%
Host resource savings ~61%

Hadoop-grep speed improvement ~38%

NVMe SSD

NetFPGA NIC

GPU

PCIe Switch

	DCS: A Fast and Scalable �Device-Centric Server Architecture
	Inefficient device utilization
	Latency: High software overhead
	Cost: High host resource demand
	Index
	Limitations of existing work
	Index
	DCS: Key idea
	DCS: Benefits
	Index
	DCS: Architecture overview
	Communicating with storage
	Communicating with network interface
	Communicating with accelerator
	Index
	Experimental setup
	DCS prototype implementation
	Reducing device utilization latency
	Reducing device utilization latency
	Host-independent performance
	Multi-device invocation
	Multi-device invocation
	Real-world workload: Hadoop-grep
	Scalability: More devices per host
	Conclusion
	Thank you!

