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Inefficient device utilization

• Host-centric device management
− Host manages every device invocation

− Frequent host-involved layer crossings
 Increases latency and management cost
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Latency: High software overhead

• Single sendfile: Storage read & NIC send
− Faster devices, more software overhead
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Cost: High host resource demand

• Sendfile under host resource (CPU) contention
− Faster devices, more host resource consumption
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Limitations of existing work
• Single-device optimization
− Do not address inter-device communication

e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)

• Inter-device communication 
− Not applicable for unsupported devices

e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)

• Integrating devices
− Custom devices and protocols, limited applicability

e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator – SSD+NIC)

Need for fast, scalable, and generic 
inter-device communication
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DCS Library Application

DCS Driver Device drivers & Kernel stacks

DCS: Key idea

• Minimize host involvement & data movement
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DCS: Benefits

• Better device performance
− Faster data delivery, lower total operation latency

• Better host performance/efficiency
− Resource/time spent for device management

now available for other applications

• High applicability
− Relies on existing drivers / kernel supports / interfaces
− Easy to extend and cover more devices
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DCS: Architecture overview
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Communicating with storage
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Communicating with network interface
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Communicating with accelerator
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Experimental setup
• Host: Power-efficient system
− Core 2 Duo @ 2.00GHz, 2MB LLC
− 2GB DDR2 DRAM

• Device: Off-the-shelf emerging devices
− Storage: Samsung XS1715 NVMe SSD
− NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)
− Accelerator: NVIDIA Tesla K20m
− Device interconnect: Cyclone Microsystems PCIe2-2707

(Gen 2 switch, 5 slots, up to 80Gbps)
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DCS prototype implementation
• Our 4-node DCS prototype

− Can support many devices per host
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Reducing device utilization latency
• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings
− DCS: Batch management in HW layer
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Reducing device utilization latency
• Single sendfile: Storage read & NIC send
− Host-centric: Per-device layer crossings
− DCS: Batch management in HW layer
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71% BW / CPU 11% busy

100% BW / CPU 29% busy

Host-independent performance
• Sendfile under host resource (CPU) contention
− Host-centric: host-dependent, high management cost
− DCS: host-independent, low management cost

CPU Busy
Sendfile bandwidth

Host-centric
DCS

100% BW / CPU 70% busy

13% BW / CPU 10% busy

No contention High contention

High performance even on weak hosts



Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)
− DCS provides much efficient data movement to GPU 
− Current bottleneck is NIC (1Gbps)
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Multi-device invocation
• Encrypted sendfile (SSD → GPU → NIC, 512MB)
− DCS provides much efficient data movement to GPU 
− Current bottleneck is NIC (1Gbps)
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Real-world workload: Hadoop-grep
• Hadoop-grep (10GB)
− Faster input delivery & smaller host resource consumption 
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Scalability: More devices per host  
• Doubling # of devices in a single host
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Conclusion
• Device-Centric Server architecture
− Manages emerging devices on behalf of host
− Optimized data transfer and device control
− Easily extensible modularized design

• Real hardware prototype evaluation
− Device latency reduction: ~25%
− Host resource savings: ~61%
− Hadoop-grep speed improvement: ~38%
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