) POSTECH

J B3l

DCS: A Fast and Scalable
Device-Centric Server Architecture

Jaehyung Ahn, Dongup Kwon, Youngsok Kim,
Mohammadamin Ajdari, Jaewon Lee, and Jangwoo Kim

{jh2ekd, nankdu7, elixir, majdari, spiegelO, jangwoo }@postech.ac.kr

High Performance Computing Lab
Pohang University of Science and Technology (POSTECH)

POSTELCH

| nefficient device utilization

e Host-centric device management

- Host manages every device invocation

- Frequent host-involved layer crossings

" Increases latency and management cost

Userspace

Hardware

Application

T == == T

Kernel stack Kernel stack Kernel stack
Driver A Driver B Driver C
T /Y
e e SRS S S A
Device A Device B Device C

»Datapath --=» Metadata/Command path

POSTELCH

Latency: High software overhead

e Single sendfile: Storage read & NIC send

- Faster devices, more software overhead

Latency
Decomposition #
: o
(Normalized))
)

o
S

Software overhead

7% 50% 77% 82%
— _ [
HDD NVMe PCM PCM
10Gb NIC 10Gb NIC 10Gb NIC 100Gb NIC
OJsoftware [] Storage MEINIC POSTERCH

Cost: High host resource demand

e Sendfile under host resource (CPU) contention

- Faster devices, more host resource consumption

Sendfile
bandwidth
100%

Sendfile
CPU usage
34%

[J CPU Busy O Sendfile bandwidth

Sendfile
bandwidth
1490

Sendfile

T CPU usage
—O- O 6%

No contention

3 *Measured from NVMe SSD/10Gb NIC

High contention

POSTELCH

INndeXx

e Limitations of existing solutions

POSTELCH

Limitations of existing work

e Single-device optimization
- Do not address inter-device communication
e.g., Moneta (SSD), DCA (NIC), mTCP (NIC), Arrakis (Generic)
e Inter-device communication
- Not applicable for unsupported devices
e.g., GPUNet (GPU-NIC), GPUDirect RDMA (GPU-Infiniband)
e Integrating devices

- Custom devices and protocols, limited applicability
e.g., QuickSAN (SSD+NIC), BlueDBM (Accelerator — SSD+NIC)

Need for fast, scalable, and generic
Inter-device communication Socy e

INndeXx

e DCS: Device-Centric Server architecture

- Key idea and benefits

POSTELCH

DCS: Key Idea

e Minimize host involvement & data movement

Application N

Hardware m R E

\ 4 \ 4 v
Device A H Device B H Device C

»Datapath ---» Metadata/Command path

Single command — Optimized multi-device invocation
7 rPOSTELCH

DCS: Benefits

e Better device performance
- Faster data delivery, lower total operation latency

e Better host performance/efficiency
- Resource/time spent for device management
now available for other applications

e High applicability

- Relies on existing drivers / kernel supports / interfaces
- Easy to extend and cover more devices

POSTELCH

INndeXx

e DCS: Device-Centric Server architecture

- Design considerations

= By discussing implementation details

POSTELCH

DCS: Architecture overview

Existing System

Application
Userspace ‘sendfile(), encrypted sendfile()\ bpItal

Kernel DCS Driver Drivers &

Kernel communicator Kernel stack
Command generator

Hardware _ PCle Switch
DCS Engine (on NetFPGA NIC)
NVMe SSD
= Command = Per-device GPU
Command |interpreter manager
Queue NetFPGA NIC

Fully compatible with existing system

10 POSTECH

Communicating with storage

Userspace DCS Library ---9----Hook / API call--ssasees; Application

""""""""" File descriptor
v

. (3 : ;
DCS Drlver --------------------------------- > (Vlrtual) Fllesystem
EO Block addr (in device) / buffer addr (cached)
____________________ *-__
Hardware

DISSAUCIUCEN ;| Target device | mmmm) |Target device

95.; NVMe SSD
Source device ﬂ VES cache

Data consistency guaranteed

11 rPOSTECH

Communicating with network interface

Application
4 2) o
DCS Drlver .. N Network Stack
EQ Connection information

____________________ e e e L e T

Hardware DCS Engine & NetFPGA NIC

. O:
Packet generation & Send ™| Data buffer hHW PacketGenb

HW-assisted packet generation

1 POSTECH

Communicating with accelerator

Kernel invocation

Memory allocation @ Call DCS library

Userspace DCS Library 2 GPU user library Application
Kernel 9 llllllllllllll ;;llllllllllllllllll;e

et memory mapping __CGPU kernel driver
____________________________________ O: .

A 4
AU DCS Engine GPU
DeProcess data
Source device | =) | Memory (Kernel launch)

O DMA / NVMe transfer

Direct data loading without memcpy

13 POSTECH

INndeXx

e Experimental results

POSTELCH

Experimental setup

e Host: Power-efficient system

Core 2 Duo @ 2.00GHz, 2MB LLC
2GB DDR2 DRAM

e Device: Off-the-shelf emerging devices

15

Storage: Samsung XS1715 NVMe SSD
NIC: NetFPGA with Xilinx Virtex 5 (up to 1Gb bandwidth)
Accelerator: NVIDIA Tesla K20m

Device interconnect: Cyclone Microsystems PCle2-2707
(Gen 2 switch, 5 slots, up to 80Gbps)

POSTELCH

DCS prototype implementation

e Our 4-node DCS prototype

16

- Can support many devices per host

I NetFPGA NIC |

POSTELCH

Reducing device utilization latency

e Single sendfile: Storage read & NIC send

- Host-centric: Per-device layer crossings
- DCS: Batch management in HW layer

79 | SW

39 }DCS

/S5 [r HW S| 75

Latency (us)

| —

Host-centric DCS POSTRPCH

17

Reducing device utilization latency

e Single sendfile: Storage read & NIC send

- Host-centric: Per-device layer crossings
- DCS: Batch management in HW layer

2X latency improvement
(with low-latency devices)

Latency

18 Host-centric DCS POSTRPCH

Host-independent performance

e Sendfile under host resource (CPU) contention

- Host-centric: host-dependent, high management cost

- DCS: host-independent, low management cost

1009 BW / CPU 709% busy
100% BW 7/ CPU 299% busy

(

[J CPU Busy Host-centric
O Sendfile bandwidth DCS

-\

{)\0\712/; BW / CPU 11%b busy

——— 13% BW / CPU 10%b6 busy

)

No contention

High contention

High performance even on weak hosts

Multi-device Invocation
e Encrypted sendfile (SSD - GPU — NIC, 512MB)

- DCS provides much efficient data movement to GPU
— Current bottleneck is NIC (1Gbps)

[J GPU data loading [0 GPU processing [Network send [NVIDIA driver

Host-centric 32 6 62

Network send (1Gb)
DCS |6(6(6 68 149% reduction

Normalized processing time

26 POSTECH

Multi-device Invocation
e Encrypted sendfile (SSD - GPU — NIC, 512MB)

- DCS provides much efficient data movement to GPU
— Current bottleneck is NIC (1Gbps)

[J GPU data loading [0 GPU processing [Network send [NVIDIA driver

Host-centric

DCS

21

32

12

6

13

Network send (10Gb)
38%06 reduction

Normalized processing time

POSTELCH

Real-world workload: Hadoop-grep
e Hadoop-grep (10GB)

- Faster input delivery & smaller host resource consumption

% -0-Map progress —“Reduce progress
100

Host-centric

N 01~
O 010 0l

S

100

Map/Reduce progress
\I
ol

o :
3 38%b faster processing _ ____

Scalability: More devices per host

e Doubling # of devices in a single host

Host-centric DCS

1.3x 2X
Devi SSD SSDx2 SSD SSDx2
EVICES NIc NICcx2 NIC NICx2

(pazijew.oN)
1ndybnouayl adinap |elol

CPU Utilization 60% 100% 22% 37%

Scalable many-device support

s POSTECH

Conclusion

e Device-Centric Server architecture
- Manages emerging devices on behalf of host

- Optimized data transfer and device control
- Easily extensible modularized design

e Real hardware prototype evaluation
- Device latency reduction: —25%
- Host resource savings: —61%
- Hadoop-grep speed improvement: —38%

24

POSTELCH

Thank you!

Device latency reduction ~25%
Host resource savings ~61%
Hadoop-grep speed improvement ~38%

High Performance Computing Lab
Pohang University of Science and Technology (POSTECH)

	DCS: A Fast and Scalable �Device-Centric Server Architecture
	Inefficient device utilization
	Latency: High software overhead
	Cost: High host resource demand
	Index
	Limitations of existing work
	Index
	DCS: Key idea
	DCS: Benefits
	Index
	DCS: Architecture overview
	Communicating with storage
	Communicating with network interface
	Communicating with accelerator
	Index
	Experimental setup
	DCS prototype implementation
	Reducing device utilization latency
	Reducing device utilization latency
	Host-independent performance
	Multi-device invocation
	Multi-device invocation
	Real-world workload: Hadoop-grep
	Scalability: More devices per host
	Conclusion
	Thank you!

