Execution Time Prediction for Energy-Efficient Hardware Accelerators

Tao Chen, Alex Rucker, and G. Edward Suh Computer Systems Laboratory Cornell University

Accelerators in Interactive Computing Systems

 Interactive systems have response time requirements and often use hardware accelerators

- Observation: Finishing earlier than the requirement is usually not needed
- **Goal**: Perform DVFS for hardware accelerators to save energy while meeting response time requirements

DVFS for Interactive Computing Systems

Save energy by running slower (lower frequency/voltage)

- Requirement
 - Correctly predict each job's execution time

Opportunity and Challenge

• Opportunity: Most jobs finish earlier than the deadline

• Challenge: Irregular variations in job execution time

Tao Chen

Conventional DVFS Controllers

- History-based execution time prediction
 - Example: PID controller

- Problem of history-based prediction
 - Reactive decisions lag behind changes

Predictive DVFS Framework for Accelerators

- Approach: Build a predictor hardware for each accelerator that uses job input data to predict execution time
- Design Time: Build predictor and train prediction model
 - Identify features related to execution time
 - Generate a hardware slice that can calculate features quickly
 - Train a prediction model that maps features to execution time
- Run Time: Run predictor to inform DVFS decisions

Features to Capture Execution Time Variation

• Source of variation: input-dependent control decisions

Feature: State Transition Count

$$STC = [st_{1,2}, st_{1,3}, st_{2,4}, st_{3,4}, st_{4,1}]$$

$$Job 1 \quad 2 \quad 0 \quad 2 \quad 0 \quad 2$$

$$Job 2 \quad 1 \quad 1 \quad 1 \quad 1 \quad 2$$

Features to Capture Execution Time Variation

Variable state latency

Feature: Counter Average Initial Value

$$AIV = [iv_{S3}]$$

Job 3 3

Other counter features in the paper

Identifying and Extracting Features

- Automated flow based on RTL analysis
 - Identify FSM and counter features in RTL
 - Instrument RTL to extract features
- More details in the paper

Hardware Slicing

- Need to obtain features before running the accelerator
- Create a minimal version of the accelerator
 - Program slicing on accelerator RTL code

• Optimize hardware slice to run fast

Execution Time Prediction Model

- Train model using convex optimization
 - Reduce the number of features
 - Prioritize meeting deadlines over saving energy

Evaluation Methodology

- Vertically integrated evaluation methodology
 - Circuit-level simulation: obtain voltage-frequency relationship
 - Gate-level modeling: obtain area, power and energy numbers
 - Register-transfer-level simulation: obtain execution time
- Benchmark accelerators

Name	Description
h264	Video decoding
cjpeg	Image encoding
djpeg	Image decoding
aes	Cryptography
sha	Cryptography
md	Molecular dynamics
stencil	Image processing

Deadline: 16.7 ms

Results: Energy and Deadline Misses

- 36.7% energy savings on average
- 0.4% deadline misses

Results: Overheads of Slice-Based Predictor

- 5.1% area overhead
- 1.5% energy overhead
- 3.5% execution time overhead

More Evaluation Results in Paper

- More detailed experimental results
 - Prediction Accuracy Analysis
 - Results with Predictor Overheads Removed
 - Sensitivity Study on Varying Deadlines
- Platform extensions
 - DVFS with Voltage Boosting
 - Results for FPGA-based Accelerators
 - Results for Accelerators Generated by HLS

Observation: Finishing faster than the deadline is not needed

Goal: DVFS for accelerators with response time requirements

Solution: Prediction-based DVFS

- Execution time depends on input-dependent control decisions
- Hardware features can be used to capture control decisions
- Proposed a framework to generate predictors automatically

Results: Highly accurate DVFS for accelerators

Questions?

Execution Time Prediction for Energy-Efficient Hardware Accelerators

Tao Chen, Alex Rucker, and G. Edward Suh Computer Systems Laboratory Cornell University