Ultra-Low Power Render-Based Collision Detection for CPU/GPU Systems

Enrique de Lucas Joan-Manuel Parcerisa Pedro Marcuello Antonio González

Market

Mobile devices market is growing fast

1. Motivation

Mobile Systems

- Users demand realistic and complex graphics like in laptops and desktops
 - Battery life is about 4 hours for GFXBench 3.0!1
 - Heat dissipation

- "CPU, GPU and screen are the dominant energy consumers on a smartphone"²
- Graphics animation applications are **quite popular**
 - Collision Detection is an important task

2. Mittal et al., Empowering Developers to Estimate App Energy Consumption, Aug. 2012.

^{1.} With an ARM Mali 400MP GPU, www.gfxbench.com

Outline

1. Motivation

2. Collision Detection (CD)

3. Render-Based CD in the GPU

4. Results

5. Conclusions

Collision Detection (CD)

CD identifies the contact points between objects

Bounding Volumes

Bounding Volume	Cuboid	Convex Hull	
Accuracy	Low	Medium	
Computing Cost	Low	High	

false area = false collisions

E-mark of		de	T coc
Enric	ue	ae	Lucas

Image-Based CD (IBCD)

- CD performed at **pixel granularity**
- No Bounding Volumes
- Higher Accuracy
- Computing/Energy Cost
 - CPU: huge
 - Our technique (GPU): tiny

Enrique de Lucas

2. Collision Detection

Outline

- 1. Motivation
- 2. Collision Detection (CD)
- **3. Render-Based CD in the GPU**
- 4. Results
- 5. Conclusion

CD Integration into GPU pipeline

Graphics Pipeline from 10,000 feet

RBCD unit

Store fragments sorted by depth Detects collision points

RBCD unit

Store fragments sorted by depth Detects collision points

ZEB buffer (on-chip array) 1 list of fragments per every pixel 16x16 lists, 8 entries per list 8 KB (16x16x8x32B)
Store fragments sorted by depth Detects collision points

Store fragments sorted by depth Detects collision points

Store fragments sorted by depth Detects collision points

Store fragments sorted by depth Detects collision points

Store fragments sorted by depth Detects collision points

Enrique de Lucas

Enrique de Lucas

Z-Overlap Test

Z-Overlap Test

Z-Overlap Test

Outline

- 1. Motivation
- 2. Collision Detection (CD)
- 3. Render-Based CD in the GPU

4. Results

5. Conclusion

Evaluation Methodology

- **TEAPOT** simulation infrastructure
 - Android and OpenGL ES
 - GPU timing simulator models:
 - Tile-Based Rendering architecture (ARM Mali 400MP-like)
 - GPU power model based on McPAT
 - Extended with **RBCD unit**
- Marss cycle accurate full system simulator
- Workloads: 4 unmodified Android commercial games

Туре	Donwnloads
beat'em up	10-50 M
snowboard arcade	5-10 M
action	100-500 K
adventure arcade	100-500 M
	Type beat'em up snowboard arcade action adventure arcade

Performance and Energy of CD

RBCD vs CD on a CPU

- **3400x** speedup and **2875x** energy reduction on average
 - RBCD reuses rendering results

GPU Overhead

• Time overhead: 3%

- Energy: 3.5%
- Area overhead: < 1%

GPU Overhead: Face Culling

Common Face Culling:

Rasterize 18% more triangles, 6% more fragments

Conclusions

- Energy budget limits the **quality** and **realism** of CD in mobile graphics animation applications
- Most of the computation required by Image-Based CD is already done in image rendering
- RBCD provides
 - **2875x** energy reduction
 - 3400x speedup
 - Pixel level accuracy
 - Small overheads: time (3%), energy (3.5%) and area (1%)
- RBCD is a **low-energy** yet **high-fidelity** CD solution

Ultra-Low Power Render-Based Collision Detection for CPU/GPU Systems

Enrique de Lucas Joan-Manuel Parcerisa Pedro Marcuello Antonio González

