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Runahead Execution Overview

* Runahead dynamically expands the instruction window
when the pipeline is stalled [Mutlu et al., 2003]
* The core checkpoints architectural state

* The result of the memory operation that caused the stall is
marked as poisoned in the physical register file

 The core continues to fetch and execute instructions
» Operations are discarded instead of retired
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Core Stall Cycles
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Runahead Buffer Overview

* Overview of Memory Dependence Chains

* Traditional Runahead Observations

* Runahead Buffer Proposal and Pipeline Modifications
* Runahead Buffer System Configuration and Evaluation

 Runahead Buffer Conclusions
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Background

* Every load has a chain of operations that must be completed
to generate the address of the memory access
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Example Dependence Chain

LD [R3] -> R5

\ 4

ADD R4, R5 -> R9

v

ADD R9, R1 -> R6

\4
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Example Dependence Chain

LD [R3] -> R5

\ 4

| |
These are the only operations that need to be

completed before the cache miss can be executed

ADD R9, R1 -> R6

\4
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Runahead Observations 1
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Runahead Observations 1
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Traditional runahead executes many operations that
are Iirrelevant to the dependence chain of a cache mIss | aion
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Runahead Observations 2
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Runahead Observations 2
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Runahead Observations 3
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Most dependence chains are short
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Runahead Buffer

At a full window stall, dynamically identify the
dependence chain to use during runahead from the
reorder buffer

* Once the chain is identified, we place it in a runahead
buffer

* The front-end Is then clock-gated and the runahead
buffer directly feeds decoded micro-ops into the back-
end for runahead execution



The University of Texas at Austin

Electrical and Computer

Engineering
Cockrell School of Engineering

Runahead Buffer Pipeline Modifications

Pseudo-
Wakeup

RA-Buffer
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Runahead Buffer Chain Generation

OXD LD [P3] -> P5 LD [R3] -> R5
OXE ADD P4, P5->P9 | ADD R4, R5->R7

Source OX7 ADD P9 P1>P6 | ADDR7,R1 ->R6

Register P4, P&, P5 0x8 MOV P6 -> P7 MOV R6 -> RO
. 7 7
Search List: 7

LD [P7] -> P8 LD [RO] -> R2
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Runahead Buffer Optimizations

* A small dependence chain cache (2-entries)
Improves performance

« Hybrid Policy
* The core begins traditional runahead execution instead of

using the runahead buffer if:

« An operation with the same PC as the operation that is blocking the
ROB is not found in the ROB

* The generated dependence chain is too long (more than 32
operations)
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System Configuration

 Single Core « 5 Configurations
* 4-wide Issue  Traditional Runahead
« 192 Entry Reorder Buffer * Runahead Buffer

 Runahead Buffer + Chain Cache
« Hybrid Policy

« Runahead Buffer

« 32 Entry IC
. Runahead Buffer Chain Cache: 2-Entries » Traditional Runahead + Energy
Optimizations
- Caches

« 32 KB L1 I/D-Cache, 3-Cycle
« 1MB Last Level Cache, 18-Cycle

» Stream Prefetcher

« Non-Uniform Access Latency DRAM
System
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Runahead Buffer Performance
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Runahead Buffer Performance
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Runahead Buffer MLP
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Energy Analysis
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Stall Cycles in Runahead Buffer Mode
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Stream Prefetching
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Bandwidth Consumption
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Energy Analysis
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Runahead Buffer Conclusions

« Many of the operations that are executed in traditional runahead
execution are unnecessary to generate cache misses

* The runahead buffer uses filtered dependence chains that only contain
the operations required for a cache miss

* These chains are generally short

* This chain is read into a buffer and speculatively executed as if they
were In a loop when the core would be otherwise idle
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Runahead Buffer Conclusions

 The runahead buffer enables the front-end to be idle for 47% of the
total execution cycles of the medium and high memory intensity SPEC
CPU2006 benchmarks

* The runahead buffer generates over twice as much MLP on average
as traditional runahead execution

* The runahead buffer results in a 17.2% performance increase and
6.7% decrease Iin energy consumption over a system with no-
prefetching. Traditional runahead execution results in a 12.3%
performance increase and 9.5% energy increase
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