Safe Limits on Voltage Reduction Efficiency in GPUs: a Direct Measurement Approach

Jingwen Leng,

Alper Buyuktosunoglu, Ramon Bertran, Pradip Bose, Vijay Janapa Reddi

This work is sponsored in part by Defense Advanced Research Projects Agency (DARPA), Microsystems Technology Office (MTO), under contract number HR0011-13-C-0022, National Science Foundation (NSF), under grant CCF-1218474, and Semiconductor Research Corporation (SRC). The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the NSF, the SRC or the U.S. Government. This document is: Approved for Public Release, Distribution Unlimited.

Circuit ------

DVFS Clock Gating Power Gating

Software/ Compiler Approximation Samadi et al. [MICRO'14] Data Transfer Rossbach et al. [SOSP'11] Park et al. [ASPLOS'15] Multi-tasking (Micro)architecture **Control Divergence** Fung et al. [MICRO'07] Warp Scheduler Rogers et al. [MICRO'13] Cache Locality Rhu et al. [MICRO'13] Circuit **DVFS** Sethia et al. [MICRO'14] **Clock Gating** Leng et al. [ISCA'13] Majeed et al. [MICRO'13] **Power Gating**

Operating
Supply Voltage

Voltage Guardband

Operating
Supply Voltage

Voltage Guardband

Operating
Supply Voltage

Voltage Guardband

Operating
Supply Voltage

Voltage Guardband Reduced voltage ->
energy savings

Voltage guardband measurement

Voltage guardband measurement

Voltage guardband measurement

Guardband analysis

Voltage guardband measurement

Guardband analysis

Program-driven predictive guardbanding

Voltage Guardband Measurement

Voltage Guardband Measurement

- Eight GPU cards in total
 - Four generations
 - Two different architectures

GTX 480 x1 GTX 580 x1 GTX 680 x1 GTX 780 x5

Voltage Guardband Measurement

- Eight GPU cards in total
 - Four generations
 - Two different architectures

- Fifty-seven representative CUDA programs
 - Regular/irregular
 - Memory/arithmetic intensive

GTX 480 x1 GTX 580 x1

GTX 680 x1 GTX 780 x5

CUDA Programs

CUDA Programs

V_{min}: minimal working voltage at nominal frequency

Measurement Results

7

Measurement Results

measured V_{min} on GTX 680 card @ 1.1 GHz

Measurement Results

57 Programs measured V_{min} on GTX 680 card @ 1.1 GHz

Voltage guardband: 9% - 18%

- Voltage guardband: 9% 18%
- Energy savings: 14% 25% at the card level

V_{min} is program dependent

Executive Summary

Guardband measurement

Guardband analysis

Guardband optimization

Process variation > 0.07 V maximum difference

Temperature variation → 0.04 V maximum difference

 Process and temperature variation → relatively uniform impact on ALL programs

 Process and temperature variation → relatively uniform impact on ALL programs

- Process and temperature variation → relatively uniform impact on ALL programs
- Voltage variation → 0.1 V difference across programs

Voltage Noise Background

Voltage Noise Background

Voltage Noise Background

Kernel based activity patterns

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

- Kernel based activity patterns
 - Inter kernel
 - Initial kernel
 - Intra kernel

Program-level V_{min} same as maximum kernel-level V_{min}

- Program-level V_{min} same as maximum kernel-level V_{min}
- Inter-kernel activity does not determine V_{min} value

- Program-level V_{min} same as maximum kernel-level V_{min}
- Inter-kernel activity does not determine V_{min} value

Program/Kernel Level V_{min} Comparison

- Program-level V_{min} same as maximum kernel-level V_{min}
- Inter-kernel activity does not determine V_{min} value

Executive Summary

Guardband measurement

Guardband analysis

Guardband optimization

- Exploit program-dependent V_{min} behavior
- Program/kernel level V_{min} prediction

Performance Counter Based V_{min} Prediction

Performance Counter Based V_{min} Prediction

 Use all available performance counters to construct a V_{min} prediction model

Performance Counter Based V_{min} Prediction

 Use all available performance counters to construct a V_{min} prediction model

Neural network

RMSE: 0.5%, max error: 3%

Large amount (up to 20%) of voltage guardband for GPUs

Large amount (up to 20%) of voltage guardband for GPUs

Intra-kernel di/dt droop is the largest guardband determinant

Large amount (up to 20%) of voltage guardband for GPUs

Intra-kernel di/dt droop is the largest guardband determinant

We show the potential of program-driven predictive guardbanding

