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Coherence and Consistency 

At a high level: 

• Coherence Protocols: Propagation of writes to 
other cores 

• Consistency Models: Ordering rules for 
visibility of reads and writes 
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Motivating Example – “Peekaboo” 

1. Invalidation before use 

– Repeated inv before use → livelock [Kubiatowicz et al. 

ASPLOS 1992] 

2. Livelock avoidance: allow destination core to 
perform one operation on data when it 
arrives, even if already invalidated [Sorin et al. 

Primer] 

– Does not break coherence 

– Sometimes intentionally returns stale data 

3. Prefetching 

 

Individual Opt. → No violation 
Combination of Opts. → Violation! 
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Motivating Example – “Peekaboo” 

• Consider mp with the livelock-avoidance mechanism:  

Core 0 Core 1 

x: Shared 
y: Modified 

x: Invalid 
y: Invalid 

[x] ← 1 
[y] ← 1 

r1 ← [y] 
r2 ← [x] 
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Motivating Example – “Peekaboo” 

• Consider mp with the livelock-avoidance mechanism:  

Core 0 Core 1 Prefetch x 

Inv 

Inv-Ack 

Data (y = 1) 

x: Modified 
y: Shared 

x: Invalid 
y: Shared 

Request y 
[x] ← 1 
[y] ← 1 

r1 = 1 
r2 = 0 

Data (x = 0) 



23 

The Coherence-Consistency Interface (CCI) 

• CCI = guarantees that coherence protocol 
provides to rest of microarchitecture + 
memory ordering guarantees that rest of 
microarch. expects from coherence protocol 

+ 

= 

Expected Coherence SWMR, DVI, No Stale Data 

Consistency 
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The Coherence-Consistency Interface (CCI) 

• CCI = guarantees that coherence protocol 
provides to rest of microarchitecture + 
memory ordering guarantees that rest of 
microarch. expects from coherence protocol 

+ 

= 

Expected Coherence SWMR, DVI, No Livelock 

CCI Mismatch Consistency 
Violation! 
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Our Work: CCICheck 
Static CCI-aware consistency verification 
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 [Lustig et al. MICRO-47] 

• Exhaustive 
enumeration of 
executions using 
µhb graphs 

• Cyclic graph 
→forbidden by 
µarch 

• Acyclic graph 
→allowed by µarch 

Background: PipeCheck 

Litmus Test mp 
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 [Lustig et al. MICRO-47] 

• Exhaustive 
enumeration of 
executions using 
µhb graphs 

• Cyclic graph 
→forbidden by 
µarch 

• Acyclic graph 
→allowed by µarch 

Background: PipeCheck 

Litmus Test mp 

Prior techniques cannot model 
CCI events! 
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Modelling CCI Events 

• Need to model per-cache occupancy 

– Lazy coherence and partial incoherence (e.g. GPUs) 

• Need to model coherence transitions that relate 
to consistency (e.g. Peekaboo) 
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ViCL: Value in Cache Lifetime 

• 4-tuple: 

(cache_id, address, data_value, generation_id) 

• cache_id and generation_id uniquely identify 
each cache line 

• A ViCL 4-tuple maps on to the period of time 
over which the cache line serves the data value 
for the address 

• ViCLs start at a ViCL Create event and end at a 
ViCL Expire event 
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Conventional co-mp timeline (M = Modified, S = Shared) 
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Path Enumeration 

Constraint 
Satisfaction 

Unsatisfiable 
Constraint → 
Invalid Scenario 

Cyclic 
Graph → 
Prune 
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Case Studies and Results 
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Conclusion 

• CCI verification is critical to correct operation of 
complex parallel systems 

• CCICheck: static CCI-aware microarchitectural 
consistency verification 

– Partial incoherence (GPUs), lazy coherence, and more! 

• µhb graphs, ViCLs, and constraint-based 
enumeration 

– Comprehensive and intuitive µarch modelling 

• Allows designers to build correct systems with 
greater ease and confidence 
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CCICheck: Using µhb Graphs to Verify 
the Coherence-Consistency Interface 

 
Yatin A. Manerkar, Daniel Lustig, 

Michael Pellauer, and Margaret Martonosi 

Code available at  
https://github.com/ymanerka/ccicheck 
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Lazy Coherence (TSO-CC) 

• No eager 
invalidation of 
sharers, but 
“InvCache” 
edges model the 
invalidation of a 
core’s private 
cache on an L1 
miss 

• Thus, TSO is 
maintained 
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