
1

CCICheck: Using µhb Graphs to Verify
the Coherence-Consistency Interface

Yatin A. Manerkar, Daniel Lustig,

Michael Pellauer*, and Margaret Martonosi

Princeton University *NVIDIA

MICRO-48

2

Coherence and Consistency

At a high level:

• Coherence Protocols: Propagation of writes to
other cores

• Consistency Models: Ordering rules for
visibility of reads and writes

3

Coherence and Consistency

Arch. Level

Coherence Verifiers

Consistency Verifiers

4

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Coherence Verifiers

Consistency Verifiers

5

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Ignore consistency
even when

protocol affects
consistency!

Coherence Verifiers

Consistency Verifiers

Assume abstract
coherence instead
of protocol in use!

6

Coherence and Consistency

Arch. Level

µarch. Level
Coherence and consistency often interwoven

Ignore consistency
even when

protocol affects
consistency!

Coherence Verifiers

Consistency Verifiers

Assume abstract
coherence instead
of protocol in use!

 CCI

7

Motivating Example – “Peekaboo”

8

Motivating Example – “Peekaboo”

1. Invalidation before use

– Repeated inv before use → livelock [Kubiatowicz et al.

ASPLOS 1992]

9

Motivating Example – “Peekaboo”

1. Invalidation before use

– Repeated inv before use → livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

– Does not break coherence

– Sometimes intentionally returns stale data

10

Motivating Example – “Peekaboo”

1. Invalidation before use

– Repeated inv before use → livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

– Does not break coherence

– Sometimes intentionally returns stale data

3. Prefetching

11

Motivating Example – “Peekaboo”

1. Invalidation before use

– Repeated inv before use → livelock [Kubiatowicz et al.

ASPLOS 1992]

2. Livelock avoidance: allow destination core to
perform one operation on data when it
arrives, even if already invalidated [Sorin et al.

Primer]

– Does not break coherence

– Sometimes intentionally returns stale data

3. Prefetching

Individual Opt. → No violation
Combination of Opts. → Violation!

12

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

13

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

14

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

15

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

16

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Shared
y: Modified

x: Invalid
y: Invalid

[x] ← 1
[y] ← 1

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

17

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

[x] ← 1
[y] ← 1

18

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

[x] ← 1
[y] ← 1

19

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1

x: Invalid
y: Invalid

r1 ← [y]
r2 ← [x]

Prefetch x

Data (x = 0)

Inv

Inv-Ack

x: Modified
y: Modified

Request y
[x] ← 1
[y] ← 1

20

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Data (x = 0)

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
[x] ← 1
[y] ← 1

r1 = 1
r2 ← [x]

21

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
[x] ← 1
[y] ← 1

r1 = 1
r2 ← [x]

Data (x = 0)

22

Motivating Example – “Peekaboo”

• Consider mp with the livelock-avoidance mechanism:

Core 0 Core 1 Prefetch x

Inv

Inv-Ack

Data (y = 1)

x: Modified
y: Shared

x: Invalid
y: Shared

Request y
[x] ← 1
[y] ← 1

r1 = 1
r2 = 0

Data (x = 0)

23

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

24

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

25

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

26

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

27

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Stale Data

Consistency

28

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock

29

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence

Consistency

SWMR, DVI, No Livelock

30

The Coherence-Consistency Interface (CCI)

• CCI = guarantees that coherence protocol
provides to rest of microarchitecture +
memory ordering guarantees that rest of
microarch. expects from coherence protocol

+

=

Expected Coherence SWMR, DVI, No Livelock

CCI Mismatch Consistency
Violation!

31

Our Work: CCICheck
Static CCI-aware consistency verification

Coherence Orderings (SWMR, DVI, etc.)

Microarch spec

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

32

Our Work: CCICheck
Static CCI-aware consistency verification

Coherence Orderings (SWMR, DVI, etc.)

Microarch spec

Lds.

L2
WB

Mem.

SB

L1

Exec.

Dec.

Fetch

Litmus Test

Microarchitectural happens-
before (µhb) graph

WB

Mem.

SB

L1

Exec.

Dec.

Fetch

33

 [Lustig et al. MICRO-47]

• Exhaustive
enumeration of
executions using
µhb graphs

• Cyclic graph
→forbidden by
µarch

• Acyclic graph
→allowed by µarch

Background: PipeCheck

Litmus Test mp

34

 [Lustig et al. MICRO-47]

• Exhaustive
enumeration of
executions using
µhb graphs

• Cyclic graph
→forbidden by
µarch

• Acyclic graph
→allowed by µarch

Background: PipeCheck

Litmus Test mp

35

 [Lustig et al. MICRO-47]

• Exhaustive
enumeration of
executions using
µhb graphs

• Cyclic graph
→forbidden by
µarch

• Acyclic graph
→allowed by µarch

Background: PipeCheck

Litmus Test mp

Prior techniques cannot model
CCI events!

36

Modelling CCI Events

• Need to model per-cache occupancy

– Lazy coherence and partial incoherence (e.g. GPUs)

• Need to model coherence transitions that relate
to consistency (e.g. Peekaboo)

37

Modelling CCI Events

• Need to model per-cache occupancy

– Lazy coherence and partial incoherence (e.g. GPUs)

• Need to model coherence transitions that relate
to consistency (e.g. Peekaboo)

38

ViCL: Value in Cache Lifetime

• 4-tuple:

(cache_id, address, data_value, generation_id)

• cache_id and generation_id uniquely identify
each cache line

• A ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

• ViCLs start at a ViCL Create event and end at a
ViCL Expire event

39

ViCL: Value in Cache Lifetime

• 4-tuple:

(cache_id, address, data_value, generation_id)

• cache_id and generation_id uniquely identify
each cache line

• A ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

• ViCLs start at a ViCL Create event and end at a
ViCL Expire event

40

ViCL: Value in Cache Lifetime

• 4-tuple:

(cache_id, address, data_value, generation_id)

• cache_id and generation_id uniquely identify
each cache line

• A ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

• ViCLs start at a ViCL Create event and end at a
ViCL Expire event

41

ViCL: Value in Cache Lifetime

• 4-tuple:

(cache_id, address, data_value, generation_id)

• cache_id and generation_id uniquely identify
each cache line

• A ViCL 4-tuple maps on to the period of time
over which the cache line serves the data value
for the address

• ViCLs start at a ViCL Create event and end at a
ViCL Expire event

42

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

43

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

44

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

45

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

46

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

47

Conventional co-mp timeline (M = Modified, S = Shared)

ViCL: Value in Cache Lifetime

Litmus Test co-mp

48

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co-mp

49

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co-mp

50

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co-mp

51

ViCL: Value in Cache Lifetime

Now with ViCLs
Litmus Test co-mp

52

ViCL: Value in Cache Lifetime

Can model requests, downgrades, etc.
Litmus Test co-mp

53

ViCL: Value in Cache Lifetime

Can model requests, downgrades, etc.
Litmus Test co-mp

54

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

55

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

56

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

57

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

58

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

59

ViCLs in µhb Graphs

• Use pipeline
model from
PipeCheck,
but add ViCL
nodes and
edges

Litmus Test co-mp

60

CCICheck Toolflow

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path
Enum.

Constraint
Satisfaction

Pruning
(Cycle

Checking)

Pass/
Fail

CCICheck

Compare

Litmus
Tests

61

CCICheck Toolflow

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path
Enum.

Constraint
Satisfaction

Pruning
(Cycle

Checking)

Pass/
Fail

CCICheck

Compare

Litmus
Tests

62

CCICheck Toolflow

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path
Enum.

Constraint
Satisfaction

Pruning
(Cycle

Checking)

Pass/
Fail

CCICheck

Compare

Litmus
Tests

63

CCICheck Toolflow

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path
Enum.

Constraint
Satisfaction

Pruning
(Cycle

Checking)

Pass/
Fail

CCICheck

Compare

Litmus
Tests

64

CCICheck Toolflow

CCICheck µarch specification
1. Instruction Paths
2. Per-Stage Orderings
3. Constraints for Instr. Paths

Path
Enum.

Constraint
Satisfaction

Pruning
(Cycle

Checking)

Pass/
Fail

CCICheck

Compare

Litmus
Tests

65

Path Enumeration

Constraint
Satisfaction

66

Path Enumeration

Constraint
Satisfaction

67

Path Enumeration

Constraint
Satisfaction

68

Path Enumeration

Constraint
Satisfaction

69

Path Enumeration

Constraint
Satisfaction

Unsatisfiable
Constraint →
Invalid Scenario

70

Path Enumeration

Constraint
Satisfaction

Unsatisfiable
Constraint →
Invalid Scenario

71

Path Enumeration

Constraint
Satisfaction

Unsatisfiable
Constraint →
Invalid Scenario

72

Path Enumeration

Constraint
Satisfaction

Unsatisfiable
Constraint →
Invalid Scenario

73

Path Enumeration

Constraint
Satisfaction

Unsatisfiable
Constraint →
Invalid Scenario

Cyclic
Graph →
Prune

74

Case Studies and Results

75

“Peekaboo”
• Livelock

prevention
mechanism
allows use of
stale data

• “Peekaboo” edge
completes cycle
=> outcome
forbidden

• Consistency
maintained

76

“Peekaboo”
• Livelock

prevention
mechanism
allows use of
stale data

• “Peekaboo” edge
completes cycle
=> outcome
forbidden

• Consistency
maintained

77

“Peekaboo”
• Livelock

prevention
mechanism
allows use of
stale data

• “Peekaboo” edge
completes cycle
=> outcome
forbidden

• Consistency
maintained

78

“Peekaboo”
• Livelock

prevention
mechanism
allows use of
stale data

• “Peekaboo” edge
completes cycle
=> outcome
forbidden

• Consistency
maintained

79

“Peekaboo”
• Livelock

prevention
mechanism
allows use of
stale data

• “Peekaboo” edge
completes cycle
=> outcome
forbidden

• Consistency
maintained

80

Partial Incoherence: GPUs

• e.g.: mp with
membar
fences [Alglave et

al. ASPLOS15]

• If fence does
not enforce
InvCache
ordering =>
no cycle

81

Partial Incoherence: GPUs

• e.g.: mp with
membar
fences [Alglave et

al. ASPLOS15]

• If fence does
not enforce
InvCache
ordering =>
no cycle

82

Partial Incoherence: GPUs

• e.g.: mp with
membar
fences [Alglave et

al. ASPLOS15]

• If fence does
not enforce
InvCache
ordering =>
no cycle

83

Verification Times

• Runtimes remain reasonable due to intelligent
pruning and unsatisfiable constraint detection

• Subsequent research has used SMT solver-
based techniques to run most tests in just
seconds! [ASPLOS 2016]

84

Verification Times

• Runtimes remain reasonable due to intelligent
pruning and unsatisfiable constraint detection

• Subsequent research has used SMT solver-
based techniques to run most tests in just
seconds! [ASPLOS 2016]

85

Conclusion

• CCI verification is critical to correct operation of
complex parallel systems

• CCICheck: static CCI-aware microarchitectural
consistency verification

– Partial incoherence (GPUs), lazy coherence, and more!

• µhb graphs, ViCLs, and constraint-based
enumeration

– Comprehensive and intuitive µarch modelling

• Allows designers to build correct systems with
greater ease and confidence

86

CCICheck: Using µhb Graphs to Verify
the Coherence-Consistency Interface

Yatin A. Manerkar, Daniel Lustig,

Michael Pellauer, and Margaret Martonosi

Code available at
https://github.com/ymanerka/ccicheck

87

Lazy Coherence (TSO-CC)

• No eager
invalidation of
sharers, but
“InvCache”
edges model the
invalidation of a
core’s private
cache on an L1
miss

• Thus, TSO is
maintained

88

Lazy Coherence (TSO-CC)

• No eager
invalidation of
sharers, but
“InvCache”
edges model the
invalidation of a
core’s private
cache on an L1
miss

• Thus, TSO is
maintained

89

Constraint-Based Enumeration

• i3 needs a source for its value

• L1 ViCL with same address and data

90

Constraint-Based Enumeration

• i3 needs a source for its value

• L1 ViCL with same address and data

91

Constraint-Based Enumeration

• i3 needs a source for its value

• L1 ViCL with same address and data

92

Constraint-Based Enumeration

• i3 needs a source for its value

• L1 ViCL with same address and data

=> Two possibilities enumerated.

93

Constraint-Based Enumeration

• i3 needs a source for its value

• L1 ViCL with same address and data

=> Two possibilities enumerated.

