
Locking Down Insecure Indirection

with Hardware-Based Control-Data

Isolation

William Arthur, Sahil Madeka,

Reetuparna Das, Todd Austin

MICRO, Waikiki, Hawaii, US

December 7th 2015

Goal of this work

MAKE SOFTWARE MORE SECURE

Reducing the software attack surface

by subtracting the root cause
leading to many software exploits today

2

Accomplished by locking down

insecure indirection

Locking Down Insecure Indirection (1)

Every control transfer in executing application

comes from the programmer:

Every PC address encoded in instructions, OR

Is derived from secure hardware structures

3

Executing application always adheres to the

programmer-defined control-flow graph

Stopping control-flow attacks

which derail the CFG

Locking Down Insecure Indirection (2)

Achieved by hardware-software co-design

4

Software:

Eliminate all indirect control-flow instructions –

via Control-Data Isolation (CDI) [1]

Hardware:

Memoization of secure control transitions in

secure hardware – via Indirect Edge Cache

[1] Getting in Control of Your Control Flow with Control-Data Isolation,

Arthur et al., CGO 2015

Outline

Software (in)security

Hardware-Based Control-Data Isolation

Measure performance and security

Conclusions

5

Software (in)security – Control-Flow Attack

Hardware-Based Control-Data Isolation

Measure performance and security

Conclusions

Control-Flow Attack

6

Control-Flow Attacks
violate, at runtime, the CFG of an application

by corrupting the PC with user-injected data

Return-to-libc

Code Gadgets

Heap Spray

Buffer Overflow
local variables, return

value

buffer

attack

code

return ?????

Stack Smash

Outline

7

Software (in)security

Hardware-Based Control-Data Isolation

Measure performance and security

Conclusions

Control-Data Isolation

int bar() {
// function code

return;
}

Vulnerable Code

9

int bar() {
// function code

return;
}

Vulnerable Code

int bar() {
// function code
if([%esp]==_ret1)

jump _ret1;
else if([%esp]==_ret2)

jump _ret1;
else

call _abort;
}

“Sled” of conditional branches

and direct jumps

White-list of valid

CFG edges

ret

Hardware-Based CDI

Software-only CDI (CGO ’15) retains

higher than desired runtime overheads for

some applications – 31% for gcc

11

Key insight: Caching previously executed

sled edges obviates subsequent re-

executions of the sled

Addition of hardware edge cache

Hardware-Based CDI Algorithm

12

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(*jmp, *call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

13

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

14

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(*jmp, *call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

15

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

16

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

17

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

18

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Place
<source,target>

in the Edge

Cache

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

19

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

20

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(*jmp, *call, ret)

Taken branch

from sled

Hardware-Based CDI Algorithm

21

Check Edge

Cache for

<source,target>

pair

Execute

Instructions

Fall-through to

sled, retain

<source>

Cache

<source,target>

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch

from sled

Edge Cache(1)

New hardware structure – edge cache

Memoization of most recent indirect edges

22

Edge Cache(2)

23

Edge

Cache

Commit

Fetch

<src,target>

=

Squash,

execute

sled

No

YesRetire

Edge Cache(2)

24

PC

GHR

BTB

Target

Index Edge

Cache

Commit

Fetch

<src,target>

=

Squash,

execute

sled

No

YesRetire

Challenges

26

Target

Address

tag, full address

Source

Address U V

Edge Cache

128 + 2 bits per entry!

1k entries = 16 kB

Region Table

27

Target

Addr. Offset

Source

Addr. Offset G G

Region

Pointer(S)

Region

Pointer(T) U V

Edge Cache

offset, 18 bits index, 5 bits

Region Table

28

Region Table

Region Address U VG

Target

Addr. Offset

Source

Addr. Offset G G

Region

Pointer(S)

Region

Pointer(T) U V

Edge Cache

Region Table

29

Region Table

Region Address U VG

Target

Addr. Offset

Region Offset

Source

Addr. Offset G G

Region

Pointer(S)

Region

Pointer(T) U V

Edge Cache

50 bits per

entry!

1k entries

6.75 kB

total
full address

Outline

30

Software (in)security

Hardware-Based Control-Data Isolation

Measure performance and security

Conclusions

Experimental Setup

gem5 architectural simulator

Detailed O3 cpu model, configured similar

to Intel Haswell processor, x86-64

SPECINT 2000 & 2006

1,024-entry edge cache
4-way set associative

32-entry region table

31

32

0.995

0.84

0

0.2

0.4

0.6

0.8

1

1.2

S
p

e
e

d
u

p
 O

v
e

r
N

a
ti

v
e

 E
x

e
c

u
ti

o
n

Benchmark Applications

Hardware-Based CDI Software-Based CDI

Branch prediction – 6% speedup 400.perlbench vs BTB

Security

Average Indirect target Reduction – AIR [2]

Measure of the reduction in the software

attack surface

33

[2] Control Flow Integrity for COTS Binaries, Zhang and Sekar, USENIX

Security 2013

99.999%+ reduction in indirect target set

Average of tens of targets per indirect

Previous works: average of tens of

thousands of targets per indirect instruction

Conclusions

Locking down insecure indirection can

eliminate contemporary control-flow

attacks

Hardware-based control-data isolation

efficiently realizes this capability

Minimal runtime overhead – 0.5%

34

Thank You

Questions?

35

