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Goal of this work

MAKE SOFTWARE MORE SECURE

Reducing the software attack surface

by subtracting the root cause
leading to many software exploits today 
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Accomplished by locking down 

insecure indirection



Locking Down Insecure Indirection (1)

Every control transfer in executing application 

comes from the programmer:

Every PC address encoded in instructions, OR

Is derived from secure hardware structures
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Executing application always adheres to the 

programmer-defined control-flow graph

Stopping control-flow attacks

which derail the CFG



Locking Down Insecure Indirection (2)

Achieved by hardware-software co-design
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Software: 

Eliminate all indirect control-flow instructions –

via Control-Data Isolation (CDI) [1]

Hardware: 

Memoization of secure control transitions in 

secure hardware – via Indirect Edge Cache

[1] Getting in Control of Your Control Flow with Control-Data Isolation, 

Arthur et al., CGO 2015
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Software (in)security – Control-Flow Attack
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Measure performance and security

Conclusions



Control-Flow Attack
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Control-Flow Attacks 
violate, at runtime, the CFG of an application

by corrupting the PC with user-injected data

Return-to-libc

Code Gadgets

Heap Spray

Buffer Overflow
local variables, return 

value

buffer

attack 

code

return ?????

Stack Smash
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Control-Data Isolation

int bar() {
// function code

return;
}

Vulnerable Code
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int bar() {
// function code

return;
}

Vulnerable Code

int bar() {
// function code
if([%esp]==_ret1)

jump _ret1;
else if([%esp]==_ret2)

jump _ret1;
else

call _abort;
}

“Sled” of conditional branches

and direct jumps

White-list of valid

CFG edges

ret



Hardware-Based CDI 

Software-only CDI (CGO ’15) retains 

higher than desired runtime overheads for 

some applications – 31% for gcc
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Key insight: Caching previously executed 

sled edges obviates subsequent re-

executions of the sled

Addition of hardware edge cache



Hardware-Based CDI Algorithm
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Hardware-Based CDI Algorithm

21

Check Edge 

Cache for 

<source,target> 

pair

Execute 

Instructions

Fall-through to 

sled, retain 

<source>

Cache 

<source,target> 

of taken branch

Hit?

Miss?

Indirect Instruction

(jmp, call, ret)

Taken branch 

from sled



Edge Cache(1)

New hardware structure – edge cache

Memoization of most recent indirect edges
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Edge Cache(2)
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Edge Cache(2)
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Challenges

26

Target 

Address

tag, full address

Source 

Address U V

Edge Cache

128 + 2 bits per entry!

1k entries = 16 kB



Region Table
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Target 

Addr. Offset

Source 

Addr. Offset G G

Region 

Pointer(S)

Region 

Pointer(T) U V

Edge Cache

offset, 18 bits index, 5 bits



Region Table
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Region Table

Region Address U VG

Target 

Addr. Offset

Source 

Addr. Offset G G

Region 

Pointer(S)

Region 

Pointer(T) U V

Edge Cache



Region Table
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Region Table

Region Address U VG

Target 

Addr. Offset

Region Offset

Source 

Addr. Offset G G

Region 

Pointer(S)

Region 

Pointer(T) U V

Edge Cache

50 bits per 

entry!

1k entries

6.75 kB

total
full address
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Experimental Setup

gem5 architectural simulator

Detailed O3 cpu model, configured similar 

to Intel Haswell processor, x86-64

SPECINT 2000 & 2006

1,024-entry edge cache
4-way set associative

32-entry region table
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Security

Average Indirect target Reduction – AIR [2]

Measure of the reduction in the software 

attack surface 
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[2] Control Flow Integrity for COTS Binaries, Zhang and Sekar, USENIX 

Security 2013

99.999%+ reduction in indirect target set

Average of tens of targets per indirect

Previous works: average of tens of 

thousands of targets per indirect instruction 



Conclusions

Locking down insecure indirection can 

eliminate contemporary control-flow 

attacks

Hardware-based control-data isolation 

efficiently realizes this capability

Minimal runtime overhead – 0.5%
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Thank You

Questions?
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