Kiln: Closing the Performance Gap Between Systems With and Without Persistence Support

Jishen Zhao, Sheng Li*, Doe Hyun Yoon*, Yuan Xie†, and Norm Jouppi*

*Pennsylvania State University, *HP Labs, *IBM Research, †AMD Research China Lab, *Google

Abstract: We propose a persistent memory design that adopts a nonvolatile cache and a nonvolatile main memory to enable atomic in-place updates without logging or copy-on-write.

Persistent Memory

DRAM (No Persistence) Disk/Flash (Persistence)

- Volatile ☻
- Byte-addressable ☻
- Fast ☻

NVRAM (STT-MRAM, PCM, ReRAM, etc.)

Requirements of Persistent Memory

- Atomicity ☑
- Consistency ☑
- Isolation ☑
- Durability ☑

Prior Work

- Logging [2,3], copy-on-write [1,4], (Atomic 8B writes)

Software Interface

- Persistent { read Xa, Xb, Xc; some processing; write X0, X1; }
- Persistent(inorder) { write Xa, Xb, Xc; }
- Persistent(inorder) { write Pa, Pb, Pc; }

Different Views of Memory System

A flat address space

Software’s view

A hierarchy

Hardware’s view

Leveraging Caching for In-place Updates

- NVRAM LLC
- Tag extension
- CIB, TID, TxID, State

Out-of-order Writebacks, In-order Commits

- `TA` updates `{A1, A2, A3}`
- `TB` updates `{B1, B2}`

Key Results

References

