Efficient Multiprogramming for Multicores with
SCAF

Timothy Creech, Aparna Kotha, Rajeev Barua

UNIVERSITY OF

& MARYLAND

Department of Electrical and Computer Engineering, University of Maryland, College Park, MD

» Multiprogramming serial programs on interactive systems is easy Serial “experiments” at runtime Dynamic Allocation

> time-sharing works well for serial processes

» However, hardware and programs are becoming increasingly parallel
> fine-grained time-sharing doesn’t work well for multiprogramming parallel
processes
» SCAF is a runtime system for multiprogramming as space-sharing

> space-sharing frees the OS from needing to time-share hardware contexts
> SCAF reasons continuously at runtime about processes’ parallel
efficiencies in order improve system efficiency

Why is Multiprogramming Parallel Processes Hard?

» parallel runtimes assume the entire machine is available for each process,
resulting in many more threads than hardware contexts

» operating systems simply attempt to schedule all of the threads to
hardware contexts in an uncoordinated fashion

» multiprogramming parallel programs is needlessly complicated for the users

Motivating Example

» NPB OpenMP Benchmark “1u.B.x"

> SunOS 5.11, Sparc T2
> 64 threads per CPU

» Say multiple users are running the “1u.B.x" program on this SMP system
» Each instance of “1u.B.x" runs on 64 threads
» How does time-sharing handle this?

“lu.B.x" Instances Machine subscription Threads/process Run time (s) > Speedup

1 100% 64 180 24.2
2 200% 64 3522 2.5
3 300% 64 3770 1.5

> Massive oversubscription can lead to terrible system efficiency

» instead of time-sharing 64 X N threads, we would like to space-share

“lu.B.x" Instances Machine subscription Threads/process Run time (s) > Speedup

1 100% 64 180 24.2
2 100% 32 312 28.6
3 100% 21 382 35.1

Time-sharing vs Space-sharing

» To avoid oversubscription and prevent the OS thread scheduler from
time-sharing hardware contexts, we can implement space-sharing

» How many hardware contexts does each process get?

> equipartitioning gives each process an equal number of contexts, but
this is wasteful if a process scales poorly

> SCAF reasons about per-process parallel efficiency in order to optimize
the speedup gained by each hardware context

thread-based time-sharing dynamic space-sharing

wn

X

)]

(=

O

L] L IR0 T IR R (L ITR0 T 0T ISR 8 18108118010 1T 15 A | O
| LRTTT T i [LSRR TR0 11801111 IEE |

II=I | IIII [III | I |] II II | III 1 n =I i IIII | I 8

©

=

)

| -

Q)

=

I

hardware contexts

SCAF Runtime Features

» Controls multiprogrammed parallel processes’ allocations to effect
space-sharing
» Allocations vary at runtime in order to improve system efficiency
» Requires no offline profiling or measurements
» Requires no program porting, modification, or recompilation
> Processes supported via modified runtime libraries (e.g. 1ibgomp,
libiomp5, etc.)

» Ports available:

> x86 Linux: GNU OpenMP
> Sparc SunOS: GNU OpenMP

» Ports in progress:
> x86 Linux: Intel OpenMP
> Tile-Gx Linux: GNU OpenMP
> Xeon Phi Linux: GNU OpenMP, Intel OpenMP

» malleability allows allocations to
vary at runtime based on
observed efficiency

» estimate serial performance
without serialization/profiling
» serial performance then compared

to observed performance to
reason about acheived efficiency

» more efficient applications
rewarded with more threads

Serial execution

- | feedback loop
Training control L

thread spawned I

. I
performance metric performance

| Contro\l" T — Efoo = f1(P£oo) 3 metric Epaz
Threads spawned forks train-

ing process | /\ ‘ m
/\ } Client foo scafd Client baz
syscalls| [3 w | \\J

d inter- b resource allocation - | resource allocation ppaz
cepted Ptoo = f2(Esoo)

Parallel
execution

work
work
work

work
work
" work
control

‘ work ‘

OS's time-sharing scheduler

Training ends available resources N

Serial execution

Results: Minimal Overhead

» Extra logic required to implement SCAF does not adversely affect
performance when processes run alone

» Results below compare executables running with and without the SCAF
runtime in place

Speedup
T
—
—
—
—
=
—
L1 [1

OB OH OB OH B B R T T - T T

mMmAMAMAMAMMMAMMMA™AA M M A M M M M A

2% g &2 %g g P g & E 2 g g
Benchmark Benchmark

» Linux on Dual Xeon E5410 » SunOS 5.10 on UltraSparc T2

Results: Selected 3-Way Multiprogramming Example

» Multiprogramming 3 NAS benchmarks: CG, SP, and LU
» Process allocations over time with SCAF

Threads

I
0 100 200 300 400

Time (seconds)

» Summary of results:
Configuration Process Runtime Speedup) Speedup

Unmodified CG 4359s 13.1 31.5
SP 474.6s 9.6
LU 507.3s 8.8

Equi- CG 3740s 155 40.7
partitioning SP 380.8s 12.2
LU 349.8s 13.0

SCAF CG 172.2s 35.7 59.3
SP 374.0s 125
LU 424.0s 11.1

Results: NAS Parallel Benchmarks

» 2-way multiprogramming across all NAS benchmarks on 2 platforms

Dual Xeon E5410 Multiprogramming T2 Multiprogramming

] — I OUnmod 1 OEQ 1 OSCAF 1 OUnmod 1 OEQ 1 OSCAF 1
EUnmod 2 EEQ 2 ESCAF 2 5 EUnmod 2 HEQ 2 ESCAF 2
6 i .
o o8
¢ < 30 I
2 4 2
o8 o8
wn wn
20
2_
10 -
0 - 0 - Il
MAOAMOMMAMMMMOMOMMOMT g 5 MOMMOMAON<CMAOMNOMMAD<AMND G
= T R - 2 o & ¥ 2 o8 o EEEL S wog L S we S LS 5 dd s 2w o
TT AT B PRTRTRITEZIT I T EE = TR I T ERETSTER IS IS EE T LT EES
B000s000YoumAAlanfalds AoR0somRfoomAadaa<<fEg
FpP9gepesppanaiasssy O EEEEFEF FENEFEEEVETE DI

> 57% of pairs see improvements
over equipartitioning

> 70% of pairs see improvements
over equipartitioning

> 15% average improvement > 15% average improvement

This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

MICRO-46 December 7-11, 2013, Davis, CA, USA

Contact: tcreechQumd.edu - http://ece.umd.edu/~tcreech

http://ece.umd.edu/~tcreech

