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» Multiprogramming serial programs on interactive systems is easy Serial “experiments” at runtime Dynamic Allocation

> time-sharing works well for serial processes

» However, hardware and programs are becoming increasingly parallel
> fine-grained time-sharing doesn’t work well for multiprogramming parallel
processes
» SCAF is a runtime system for multiprogramming as space-sharing

> space-sharing frees the OS from needing to time-share hardware contexts
> SCAF reasons continuously at runtime about processes’ parallel
efficiencies in order improve system efficiency

Why is Multiprogramming Parallel Processes Hard?

» parallel runtimes assume the entire machine is available for each process,
resulting in many more threads than hardware contexts

» operating systems simply attempt to schedule all of the threads to
hardware contexts in an uncoordinated fashion

» multiprogramming parallel programs is needlessly complicated for the users

Motivating Example

» NPB OpenMP Benchmark “1u.B.x"

> SunOS 5.11, Sparc T2
> 64 threads per CPU

» Say multiple users are running the “1u.B.x" program on this SMP system
» Each instance of “1u.B.x" runs on 64 threads
» How does time-sharing handle this?

“lu.B.x" Instances Machine subscription Threads/process Run time (s) > Speedup

1 100% 64 180 24.2
2 200% 64 3522 2.5
3 300% 64 3770 1.5

> Massive oversubscription can lead to terrible system efficiency

» instead of time-sharing 64 X N threads, we would like to space-share

“lu.B.x" Instances Machine subscription Threads/process Run time (s) > Speedup

1 100% 64 180 24.2
2 100% 32 312 28.6
3 100% 21 382 35.1

Time-sharing vs Space-sharing

» To avoid oversubscription and prevent the OS thread scheduler from
time-sharing hardware contexts, we can implement space-sharing

» How many hardware contexts does each process get?

> equipartitioning gives each process an equal number of contexts, but
this is wasteful if a process scales poorly

> SCAF reasons about per-process parallel efficiency in order to optimize
the speedup gained by each hardware context

thread-based time-sharing dynamic space-sharing
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hardware contexts

SCAF Runtime Features

» Controls multiprogrammed parallel processes’ allocations to effect
space-sharing
» Allocations vary at runtime in order to improve system efficiency
» Requires no offline profiling or measurements
» Requires no program porting, modification, or recompilation
> Processes supported via modified runtime libraries (e.g. 1ibgomp,
libiomp5, etc.)

» Ports available:

> x86 Linux: GNU OpenMP
> Sparc SunOS: GNU OpenMP

» Ports in progress:
> x86 Linux: Intel OpenMP
> Tile-Gx Linux: GNU OpenMP
> Xeon Phi Linux: GNU OpenMP, Intel OpenMP

» malleability allows allocations to
vary at runtime based on
observed efficiency

» estimate serial performance
without serialization/profiling
» serial performance then compared

to observed performance to
reason about acheived efficiency

» more efficient applications
rewarded with more threads
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Results: Minimal Overhead

» Extra logic required to implement SCAF does not adversely affect
performance when processes run alone

» Results below compare executables running with and without the SCAF
runtime in place
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» Linux on Dual Xeon E5410 » SunOS 5.10 on UltraSparc T2

Results: Selected 3-Way Multiprogramming Example

» Multiprogramming 3 NAS benchmarks: CG, SP, and LU
» Process allocations over time with SCAF
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» Summary of results:
Configuration Process Runtime Speedup ) Speedup

Unmodified CG 4359s 13.1 31.5
SP 474.6s 9.6
LU 507.3s 8.8

Equi- CG 3740s 155 40.7
partitioning  SP 380.8s 12.2
LU 349.8s 13.0

SCAF CG 172.2s  35.7 59.3
SP 374.0s 125
LU 424.0s 11.1

Results: NAS Parallel Benchmarks

» 2-way multiprogramming across all NAS benchmarks on 2 platforms

Dual Xeon E5410 Multiprogramming T2 Multiprogramming
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> 57% of pairs see improvements
over equipartitioning

> 70% of pairs see improvements
over equipartitioning

> 15% average improvement > 15% average improvement
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