Wavelength Stealing: An Opportunistic Approach to Channel Sharing in Multi-chip Photonic Interconnects

Arslan Zulfiqar (UW - Madison), Pranay Koka, Herb Schwetman (Oracle Labs), Mikko Lipasti (UW - Madison), Xuezhe Zheng, and Ashok V. Krishnamoorthy (Oracle Labs)

Problem: What is the “best” topology design for photonic substrates?

Point-to-Point or Channel sharing

Extra ring-resonators on shared wavelengths lead to higher laser power consumption

Photonic networks are static power dominated: laser, ring-resonator tuning power

Efficiencies of WDM lasers: 1-5%

IMPLICATIONS OF LASER POWER BUDGET

<table>
<thead>
<tr>
<th>P2P (unshared)</th>
<th>2-way sharing</th>
<th>4-way sharing</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-to-All traffic: 4 x 4b/cycle + 16b/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permutation traffic: 4b/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-to-All traffic: 4 x 3b/cycle + 12b/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permutation traffic: 6b/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-to-All traffic: 4 x 1b/cycle + 4b/cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Permutation traffic: 6b/cycle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Increasing sharing degree: ‘s’
- Reduces effective capacity 😞
- Increases peak N-N BW followed by drop-off 😞

Optimal sharing gain ~ 1.7x
Optimal sharing degree s_{total} = 3

WAVELENGTH STEALING ARCHITECTURE

- **Owner node**
 - Guaranteed non-blocking access

- **Stealer node**
 - Arbitration-free access on an owner’s channel: possible packet corruption
 - Notification to halt stealing when channel busy

- **Destination node**
 - Corrupted phit: perform correction
 - Valid phit: identify sender (owner or stealer?)

- **Two Designs:**
 - Abort
 - (+) Fewer waveguides
 - (−) Conservative performance
 - (−) More ring-resonators
 - Sense
 - (+) Aggressive performance
 - (+) Fewer ring-resonators
 - (−) More waveguides

Increasing sharing degree: ‘s’
- Reduces effective capacity 😞
- Increases peak N-N BW followed by drop-off 😞

Optimal sharing gain ~ 1.7x
Optimal sharing degree s_{total} = 3

- Same topology as the P2P network: N^2 channels
- Every channel has one owner and one or more stealers

- **Owner node**
 - Guaranteed non-blocking access

- **Stealer node**
 - Arbitration-free access on an owner’s channel: possible packet corruption
 - Notification to halt stealing when channel busy

- **Destination node**
 - Corrupted phit: perform correction
 - Valid phit: identify sender (owner or stealer?)

- **Two Designs:**
 - Abort
 - (+) Fewer waveguides
 - (−) Conservative performance
 - (−) More ring-resonators
 - Sense
 - (+) Aggressive performance
 - (+) Fewer ring-resonators
 - (−) More waveguides

Increasing sharing degree: ‘s’
- Reduces effective capacity 😞
- Increases peak N-N BW followed by drop-off 😞

Optimal sharing gain ~ 1.7x
Optimal sharing degree s_{total} = 3

- Same topology as the P2P network: N^2 channels
- Every channel has one owner and one or more stealers

- **Owner node**
 - Guaranteed non-blocking access

- **Stealer node**
 - Arbitration-free access on an owner’s channel: possible packet corruption
 - Notification to halt stealing when channel busy

- **Destination node**
 - Corrupted phit: perform correction
 - Valid phit: identify sender (owner or stealer?)

- **Two Designs:**
 - Abort
 - (+) Fewer waveguides
 - (−) Conservative performance
 - (−) More ring-resonators
 - Sense
 - (+) Aggressive performance
 - (+) Fewer ring-resonators
 - (−) More waveguides

Increasing sharing degree: ‘s’
- Reduces effective capacity 😞
- Increases peak N-N BW followed by drop-off 😞

Optimal sharing gain ~ 1.7x
Optimal sharing degree s_{total} = 3