The performance vulnerability of architectural and non-architectural arrays to permanent faults

Damien Hardy, Isidoros Sideris, Nikolas Ladas, Yiannakis Sazeides

University of Cyprus - University of Rennes 1/IRISA

MICRO 45, Vancouver, December 3rd, 2012
Permanent faults & failure

- Tomorrow
 - Failure will not be exceptional
 - Pfail increases with scaling

- Making hardware perfect not scalable
 - Increase spares => more area/cost
 - Larger cells => more area/power/cost

- Solution: Finer Disabling Grain
 => A processor that operates correctly in the presence of permanent faults by disabling faulty entries

The performance vulnerability of architectural and non-architectural arrays to permanent faults
Measure Performance Variability (PV)

- Implication of Permanent Faults on Performance
 - What is the expected performance of such processor?
 - What is the performance distribution of such a processor?
 - Which arrays are more critical to protect?

- Current practice: Measure PV for a given p_{fail} with fault maps
 - How many fault maps to generate to get accurate results?
 - A lot of computation time may be required

The performance vulnerability of architectural and non-architectural arrays to permanent faults
Analytical based methodology

- Rapid estimation of expected PV and PV distribution
 - Without many and long microarchitectural simulations
 - Without fault map generation

- Enables designer to
 - Determine which structures are more important to protect
 - Explore reliability based trade-offs

Session IB - Fault Tolerance

The performance vulnerability of architectural and non-architectural arrays to permanent faults