KnightShift: Scaling the Energy Proportionality Wall Through Server-Level Heterogeneity

Daniel Wong Murali Annavaram
University of Southern California
How do you accurately quantify energy proportionality?
How do you accurately quantify energy proportionality?

\[DR = \frac{Power_{peak} - Power_{idle}}{Power_{peak}} \]

Dynamic Range
How do you accurately quantify energy proportionality?

\[EP = 1 - \frac{Area_{\text{actual}} - Area_{\text{ideal}}}{Area_{\text{ideal}}} \]

Energy Proportionality =

\[DR = \frac{Power_{\text{peak}} - Power_{\text{idle}}}{Power_{\text{peak}}} \]

Dynamic Range
How do you accurately quantify energy proportionality?

Energy Proportionality = $EP = 1 - \frac{Area_{actual} - Area_{ideal}}{Area_{ideal}}$

Dynamic Range

$DR = \frac{Power_{peak} - Power_{idle}}{Power_{peak}}$

Linear Deviation

$LD = \frac{Area_{actual}}{Area_{linear}} - 1$
What can historical Energy Proportionality trends tell us?
What can historical Energy Proportionality trends tell us?

Lessons from the past:
1. Dynamic range improvements has stalled
2. Energy Proportionality has also stalled
What can historical Energy Proportionality trends tell us?

Lessons from the past:
1. Dynamic range improvements has stalled
2. Energy Proportionality has also stalled

Opportunities for future EP growth
1. To improve EP, we must improve LD
2. Large disproportionality at low utilization
KnightShift Server Architecture

KnightShift improves EP by:

<table>
<thead>
<tr>
<th>Improving Dynamic Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closing disproportionality at low utilization</td>
</tr>
<tr>
<td>Improving Linear Deviation</td>
</tr>
</tbody>
</table>
Come see our talk!

Session IIB – Energy I

British Ballroom

Starting @ 3:30pm