Fine-grained Power Budgeting to Improve Write Throughput of MLC PCM

Lei Jiang, **Youtao Zhang**, **Bruce R. Childers** and **Jun Yang**

Electrical and Computer Engineering Department
Computer Science Department
University of Pittsburgh, Pittsburgh
Executive Summary

- **Problem**: MLC PCM write throughput is limited by chip and DIMM level power constraints.
Executive Summary

• **Problem**: MLC PCM write throughput is limited by chip and DIMM level power constraints.

• **Our Goal**: maximize write throughput
Executive Summary

- **Problem**: MLC PCM write throughput is limited by chip and DIMM level power constraints.

- **Our Goal**: maximize write throughput

- **Our Solutions**:
 - For chip level power constraint
 - Incorporate a global charge pump to circulate power tokens among chips
Executive Summary

- **Problem:** MLC PCM write throughput is limited by chip and DIMM level power constraints.

- **Our Goal:** maximize write throughput

- **Our Solutions:**
 - For chip level power constraint
 - Incorporate a **global charge pump** to circulate power tokens among chips
 - For DIMM level power constraint
 - Propose an **iteration-based** power management that allocates power tokens iteration by iteration
Executive Summary

• **Problem:** MLC PCM write throughput is limited by chip and DIMM level power constraints.

• **Our Goal:** maximize write throughput

• **Our Solutions:**
 – For chip level power constraint
 – Incorporate a *global charge pump* to circulate power tokens among chips
 – For DIMM level power constraint
 – Propose an *iteration-based* power management that allocates power tokens iteration by iteration

• **Results:** **X3.4 write throughput & 76% speedup**
Monday, December 3, 2012
13:30-15:00
Session IA - Memory Systems I