Time Interpolation: So Many Metrics, So Few Registers

Todd Mytkowicz
Peter F. Sweeney
Matthias Hauswirth
Amer Diwan

U of Colorado, Boulder
IBM Research
U of Lugano, Switzerland
U of Colorado, Boulder
What other metrics correlate with IPC when it is low?
Hardware Performance Monitors

- Available on all microprocessors today
- Lots of metrics: between 32-475
- But can’t collect all the metrics at once
 - Only 2-18 registers
 - Restrictions on what can be collected together

- We need time interpolation:
 - To allow reasoning about the relationships between metrics collected at different times
Multiplexing

• Cycles per allocation: fixed for each allocation.
• Number of allocations per round; fixed for each round (e.g. 4).
• Time interpolation: derive round count from allocation count.
Three Multiplexing Approaches

Base
[Reza et al.]

TAM
[Mathur and Cook]

PME
[Mathur and Cook]
Why Trace Alignment is Hard?

- First 200M cycles of two runs of bzip2 benchmark
- After only 160M cycles, diverge
Full Uniform Scaling (FUS)

• Given two sequences X and Y, $|X| > |Y|$, $y_{\text{floor}}(k \cdot (|Y|/|X|)) \rightarrow X_k$
Dynamic Time Warping (DTW)

- Needs a common metric, the *alignment metric*, in two traces

- Dynamic Time Warping [Berndt and Clifford 1994]

\[
Dtw\text{Error} = \sum_{k=1}^{\mid W \mid} \mid x_i - y_j \mid \quad \text{where } w_k = (i, j)
\]
What is a good alignment metric?

Alignment metric should reflect the key transitions in the metrics to be correlated.
Picking an alignment metric

- **Fixed**: Analyst carefully picks a metric
 - e.g., *IPC*

- **Variable**: Pick a different alignment metric for each pair of metrics to be correlated
 - e.g., *Sum*: pick an alignment metric that is most correlated with both metrics in the pair
Deficiencies of Prior Evaluations

• **Multiplexing**
 - Evaluated without accounting for time varying behavior

• **Trace Alignment**
 - **FUS**
 - None known
 - **DTW**
 - Visual inspection of time-varying relationship between metrics, but did not quantify effectiveness!
Contributions

• Invented *correlation criterion* to evaluate different time interpolation techniques

• Used criterion to evaluate multiplexing and trace alignment
Evaluation Criterion

• How well does time interpolation preserve correlation between metrics?

• Compare correlation with and without time interpolation

• Correlation Error = | baseline – outer |
 - baseline correlation
 • metrics in same non-multiplexed trace
 - outer correlation
 • Trace alignment: metrics in different traces
 • Multiplexing: collected metrics for only part of the time
Post-Mortem Multiplexing

Trace

\[\begin{array}{cccccccc}
A_1 & A_2 & A_3 & A_4 & A_5 & A_6 & A_7 & A_8 \\
B_1 & B_2 & B_3 & B_4 & B_5 & B_6 & B_7 & B_8 \\
\end{array} \]

Derived Multiplexed trace

\[\begin{array}{cccccccc}
A_1 & B_2 & A_3 & B_4 & A_5 & B_6 & A_7 & B_8 \\
\end{array} \]

Time Interpolated trace

\[\begin{array}{cccccccc}
TI(A_1) & TI(A_3) & TI(A_5) & TI(A_7) \\
TI(B_2) & TI(B_4) & TI(B_6) & TI(B_8) \\
\end{array} \]

Construct baseline trace

\[\begin{array}{cccccccc}
A_1+A_2 & A_3+A_4 & A_5+A_6 & A_7+A_8 \\
B_1+B_2 & B_3+B_4 & B_5+B_6 & B_7+B_8 \\
\end{array} \]
Evaluation Technique

• Correlation error is a score for a pair of metrics.
• Collect 15 metrics, 15 choose 2 pairs or 105 scores!

How to present this data?
• For one benchmark
• For all benchmarks
Presentation of Data

We use cumulative distribution functions to present our data.
Experimental Methodology

• **Platform**: 2.0 GHz Intel Pentium 4 & Linux
 - 18 HPM registers

• **Trace Infrastructure**
 - Built on top of PAPI
 - Generated record every 200,000 cycles

• **Benchmarks**
 - SPEC CPU2006 benchmarks
 • Use input that yielded runtime < 150 seconds.

• **Metric selection**
 - Collected 15 metrics
 - Varied hardware functionality
 - Spectrum of correlation scores
Multiplexing Variations
(Pentium 4, C Spec Benchmarks)

Configuration is same as Reza et al.: 10 allocations per round, 200K cycles per allocation

sjeng

TAM performs best (but not great)
Trustworthiness of Multiplexing
(Pentium 4, C Spec Benchmarks)

If the metrics of interest are in the same allocation then multiplexing is most likely trustworthy
Granularity and Multiplexing
(Pentium 4, C Spec Benchmarks)

What happens if we collect more metrics?

Multiplexing degrades as we collect more metrics.
Trace Alignment Variations

C on Pentium 4

Java on Power4+

DTW(Sum) outperforms DTW(IPC) especially for Java
If the metrics of interest and alignment metric are highly correlated then alignment is most likely trustworthy.
DTW: granularity

DTW(Sum) not effected by change in sample size.
The Bakeoff
(Pentium 4, C Spec Benchmarks)

Comparing trace alignment and multiplexing

DTW(Sum) is the technique of choice
Why not always use DTW?

- Multiplexing advantages
 - Only one run
 - Handles non-deterministic programs
- DTW advantages
 - Better, more consistent results across different granularities
 - Less perturbation, samples once per round, whereas multiplexing samples once per allocation
Beyond C
(Power4+/AIX, Java SPECjvm98 Jikes RVM)

Summary: DTW(Sum) effectiveness not limited to C, HPMs, or one target architecture. JVM introduces more correlation error.
Related Work

• Multiplexing hardware events
 • R. Azimi, M. Stumm, and R. W. Wisniewski. *Online performance analysis by statistical sampling of microprocessor performance counter*
 • Wiplove Mathur and Jeanine Cook. *Toward accurate performance evaluation using hardware counters*

• Dynamic Time warping
 • Hundreds of papers in speech recognition, time-series data mining, bioinformatics…

• Full Uniform Scaling
 • E. Keogh. *Efficiently finding arbitrarily scaled patterns in massive time series databases*
Conclusions

• Applications exhibit time-varying behavior
 - Need to reason about time-varying relations between metrics
 - Need time interpolation to reason about metrics collected at different times.

• Introduced novel evaluation technique

• Evaluated multiplexing and trace alignment
 - For each technique, evaluated multiple approaches
 - Explored sensitivity of parameter space
 - Multiple languages, platforms and OS

• DTW(SUM) performs well enough to enable reasoning across a large number of metrics
Questions
Milestone-based Alignment

• Why not use regular deterministic events (milestones) to align two traces?
 - Align the n^{th} occurrence in one trace with the n^{th} occurrence in another trace
• Hard to find good milestones
 - Uniformly and frequently distributed,
 • Otherwise requires alignment between them
• Java applications
 - Although application thread deterministic, JVM threads not, but interested in application and JVM interaction.
• Deterministic C programs (no runtime!)
 - Use instruction count as milestone!
 - Sample on every n^{th} instructions completed.
 - As good as DTW(Sum) when applicable.
Correlation Scores

Box plot of correlation scores for all pairs of metrics across all benchmarks
- Each column is a pair of metrics for all benchmarks
- Bold line in middle is median
- Large spectrum of correlation scores: good basis for evaluation