The Role of NSF in Computer Architecture Research

A. Yavuz Oruç

Professor
University of Maryland at College Park
Former Director
Computer Systems Architecture Program
2000-2002
National Science Foundation

Nanotube Flattened View
Q open Document License
isclaimer: The opinions and views expressed in this talk are solely Author's own. Nor binding in any way on the part of Natience Foundation or the University of Maryland.

OVERVIEW-NSF OVERVIEW-CCR
 OVERVIEW-CSA
 PARTING THOUGHTS

THREADED

MULTI-THREADED

NEXT SLIDE RREVIOUS SLIDE

OVERVIEW-NSF ->
ORGANIZATION ->
CISE-> CCR -> CSA ->
OVERVIEW OF CSA ->
PROGRAM HIGHLIGHTS ->
PARTING THOUGHTS

THREADED
mULTI-THREADED

MEXT SUIDE PREVIOUS SLIDE

OVERVIEW-NSF -> OVERVIEW OF CISE ->
FY2003 BUDGET - $>$ OVERVIEW OF CCR -> CISE BUDGET->

OVERVIEW OF CSA ->
CCR BUDGET ->
PROGRAM HIGHLIGHTS ->
CSA BUDGET ->
PARTING THOUGHTS

THREADED

MULTI-THREADED

NEXT SLIDE RREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION
-OVERVIEW -

	"It is our [NSF's] job to keep all
fields of science and engineering	
focused on the furthest frontier, to	
recognize and nurture emerging	
fields, to support the work of those	
with the most insightful reach,	
and to prepare coming	
generations of scientific talent."	
	NSF Director Rita colwell
	The National Science Foundation at 50 "
	New York Academy of Sciences, September 30,1999

MISSION-2000

MISSION-1950

MISSION-ITEMIZED
HISTORY-1
HISTORY-2
HISTORY-3
HISTORY-4
ORGANIZATION
CISE
CCR

MEXT SLIDE
RREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

MISSION-2000

NSF's mission is set out in the preamble to the
National Science Foundation Act of 1950 (Public Law 810507):
To promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.


```
            at te Branh Brarim
    Bgon ead blf at the Cly dWrultgiton on Twadey, the tlind
        dyy Ifuna%, we thouad nise fowhod wal Nty
            AN ACT
```

To promote the pregree of science; to advance the national health,
peppericy, and wolfan; to now n the netipal deferrer; and for
abr perpoms
Bt it enacted by tho Senate and Honer of Mepreecstativet of the

be cine an the "Sational Science Feandation Act of 1350"

Govenmant as lodependait agony to by how as the National
Siren Poublation (hereinafter referred to as the "Foundation").
The Foundation shall consist of a National Scinoce Board (hemin
stir irfecrel to an the "Hoard") and a Director.

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CASE

CR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

 -OVERVIEW -MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

$\left.$| |
| :--- |
| |
| |
| Members at this first meeting had heard
 the Foundation's Director to someone they
 considered less than qualified for the job: | | Frank P. Graham, a lame duck U.S. Senator |
| :--- |
| and former history professor. According to |
| later accounts, Truman showed up and asked |
| what they had been talking about. Someone | \right\rvert\, | replied that they'd been wondering what |
| :--- |
| quatifications Truman thought were |
| appropriate for the Foundation's Director. |

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

	Natianal Science Baard-- Office of Inspectas Genesal NSF Director-------Ollice of EQOrpartunity Pros
	1 ---------Olfice of Legirlative and Pab. All.
	Office of Integrative Activities Office of Polar Programs - Olfice of The General Connsel
	NSF Deputy Disector
	Bialogy Directorate Computer and Information Science and Engincering Dinectorate
	Education and Human Resousces Disectorate
	Engincering Dinectorate Georciencer Dinectorate Mathematical and Plysical Science Dinectorate
	Social, Behavasial and Economic Sciences Disectorate
	Office of Budget, Finance and Award Managment Office of Information and Rerounce Management

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-I

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-1

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

NATIONAL SCIENCE FOUNDATION

-OVERVIEW -

	COMPUTER COMMUNICATIONS RESEARCH
	Kamal Abdati Acting Disector
	Frank Anger, Acting Deputy Division Dinector
	-COMPUTER SYSTEMS ARCHITECTURE- Peten Varman
	-DESIGN AUTOMATION FOR MICRO
	AND NANO SYSTEMS - Bot Gratton
	-EMBEDDED \& HYBRID SYSTEMS- Helen Gill
	- COMMUNICATIONS- Julia Alrahams
	-SIGNAL PROCESSING- Jolan Cozzen4
	-TRUSTED COMPUTING- Carl Landwehn
	- SOFTWARE ENGINEERING \& LANGUAGES-Frank Anger
	- operating SYstems xCOMPILERS- Randy Chao
	-THEORY DF COMPUTING- D. 2. Hu
	-GGRAPHIES, SYMBOLIC, \varnothing GEOMETRIC
	- COMPUTATION-Vohn Staudhammen

MISSION-2000

MISSION-1950

MISSION-ITEMIZED

HISTORY-I

HISTORY-2

HISTORY-3

HISTORY-4

ORGANIZATION

CISE

CCR

NEXT SLIDE
PREVIOUS SLIDE

FISCAL YEAR 2003 BUDGET

FISCAL YEAR 2003 BUDGET

FISCAL YEAR 2003 BUDGET

Proposed funding for the Mathematical Sciences priority area is as follows:				
	FY 2002			
	Current	FY 2003	Chan	
	Plan	Request	Amount	Percent
Biological Sciences	0.00	0.91	0.91	N/A
Computer and Information Science and Engineering	0.00	2.29	2.29	N/A
Engineering	0.00	0.91	0.91	N/A
Geosciences	0.00	4.57	4.57	N/A
Mathematical and Physical Sciences	30.00	47.39	17.39	58.0\%
Social, Behavioral and Economic Sciences	0.00	1.10	1.10	N/A
Office of Polar Programs	0.00	0.18	0.18	N/A
Subtotal, Research and Related Activities	\$30.00	\$57.35	\$27.35	91.2\%
Education and Human Resources	\$0.00	\$2.74	2.74	N/A
Total, Mathematical Sciences	\$30.00	\$60.09	\$30.09	100.3\%

PRIORITY AREAS

Totals may not add duc to rounding.

Long-term funding for the Mathematical Sciences priority area is as follows:					
FY 2002 (Millions of Dollars)	FY 2003 Request	FY 2004	FY 2005	FY 2006	FY 2007
30.00	60.09	72.10	86.50	99.50	109.50

PRIORITY DOLLARS BY PROGRAM

BIOCOMPLEXITY IT-RESEARCH NANOTECHNOLOGY 21ST CENTURY LEARNING
MATHEMATICAL
SCIENCES
FUNDING LEVELS

FISCAL YEAR 2003 BUDGET

FISCAL YEAR 2003 CISE BUDGET REGULAR DIVISION+PROGRAM+ITR FUNDS

FISCAL YEAR 2003 CISE BUDGET REGULAR DIVISION+PROGRAM+ITR FUNDS

,	$\mathrm{FYO2}^{\text {FYO3 Change }}$		FYO_{3} Change		HIGHLIGHTS
COMPUTER	OMMUNICATIONS RESEARCH	\$69,810	570,170	0.5\%	
informati	NAND- INTELHGENT SYSTEMS	\$52,060	\$50,610	-2.8\%	DOLLARS BY CISE DIVISION
EXPERIMEN	al and integrative activities	\$62,670	\$62,160	-0.8\%	DOLLARS BY
advancer	omputational infrastructure	E 586,970	\$85,420	-1.8\%	
AND RESEA	CH (S80M INFRASTRUCTURE)				
advancer	ETWORKING INFRASTRUCTURE	\$69,860	\$67,910	-2.8\%	
AND RESEA	CH (S4)M INFRASTRUCTURE)				
ITR		\$173,510	5190,670	9.9\%	NEXT SLIDE
CISE		\$514,880	\$526,940	2.3\%	

FISCAL YEAR 2003 CISE BUDGET REGULAR DIVISION+PROGRAM+ITR FUNDS

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM

MISSION

SCOPE-SHORT TERM

SCOPE-LONG TERM

MEXT SLIDE
PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM

MISSION

SCOPE-SHORT TERM

SCOPE-LONG TERM

MEXT SLIDE

RREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM

	LONGER TERM
	Nanoscale Systems and
	Molecular Architectures
	Abowt 10 hydrogen atoms standing side-by-side $=1$ nanometer
	A DNA Molecule $=2.5$ nanometer
	A Carbow nanotube $=1.5$ nanoweter
	"Nanotechnology has given us the tools... to play with the ultimate toy box of natureatoms and molecules. Everything is made from it... Possibilities to creat new things appear limitless.
	Horst Stormer, Nobel Prize Winner-Physics columbia University

MISSION

SCOPE-SHORT TERM

SCOPE-LONG TERM

MEXT SLIDE
RREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM
IN NUMBERS

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM

IN NUMBERS

FY2	001		BUDGET
Fr2			
Reg	ular Proposals Received:	36	NDING
Req	ular Proposals Awarded:	17 (\%48)	Regular
Red	ular Proposals Declined:	19 (\%52)	FUNDING
Aw	rd Range: $\$ 189 \mathrm{~K}$ - \$422K		Career
Ave	rage Award/year: \$87K		FUNDING
FY2	022		Tota
Reg	ular Proposals Received:	50	$\begin{gathered} \text { FYO2+ } \\ \text { COMMITTMENTS } \end{gathered}$
Reg	ular Proposals Awarded:	13 (\%26)	
Reg	ular Proposals Declined:	37 (\%74)	BUDGET TREND
Aw	rd Range: \$144K - \$331K		NEXT SLIDE
Ave	rage Award/year: \$85K		PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM
IN NUMBERS

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM
IN NUMBERS

	FY2001	BUDGET
	Proposats Received: 60	FUNDING
	Proposats Awarded: 25 (\%42)	Regular
	Proposals Dectined: 35 (\%58)	FUNDING
	Award Range: \$189K-\$422K	Career
	Average Award/year: $\sim \$ 78 \mathrm{~K}$	FUNDING
	FY2002	Total
	Proposals Received: 70	$\xrightarrow[\text { COMMITTMENTS }]{\text { Fit }}$
	Proposals Awarded: 20 (\%28)	
	Proposals Declined: 50 (\%72)	BUDGET TREND
	Award Range: \$144K-\$375K	NEXT SUIDE
	Average Award: $\sim \$ 81 \mathrm{~K}$	PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM IN NUMBERS

		BUDGET
		FUNDING
		Regular
		FUNDING
	FY2003: \$1,173,770	
	FY2004: \$1,301,517	
	FY2005: \$ 760,308	FUNDING
		Total
		$\begin{aligned} & \text { FYoz+ } \\ & \text { cOMMITTMENTS } \end{aligned}$
		BUDGET TREND
		CEEXT SLIDE
		PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM
IN NUMBERS

		BUDGET
	FY1997 \$ 5.6M	FUNDING
	FY1998 \$ 6.5M	Regular
	FY1999 \$ 5,972,535	FUNDING
	FY2000 \$ 5,733,751	Career
	FY2001 \$ 5,846,939	FUNDING
	FY2002 \$ 4,677,413	Total
	Total: $\sim \$ 34 \mathrm{M}$	$\underset{\text { FYOZ }}{\text { COMITTMENTS }}$
		BUDGET TREND
		NEXT SLIDE
		PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM BY FUNDEDTOPICS

CAREER-01

CAREER-02

REGULAR-01

REGULAR-02

NEXT SUIDE

PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM BY FUNDEDTOPICS

CAREER-01

CAREER-02

REGULAR-01

REGULAR-02

NEXT SLIDE
PREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM BY FUNDEDTOPICS

CAREER-01

CAREER-02

REGULAR-01

REGULAR-02

NEXT SUIDE
RREVIOUS SLIDE

THE COMPUTER SYSTEMS ARCHITECTURE PROGRAM BY FUNDEDTOPICS

CAREER-01

CAREER-02

REGULAR-01

REGULAR-02

NEXT SLIDE
RREVIOUS SLIDE

PROPOSAL REVIEW AND AWARD/DECLINATION PROCESS

PROPOSAL REVIEW AND AWARD/DECLINATION PROCESS

Continuation of Form 7

Computer Systems Architecture Program

DATE: XXXXX

PROPOSAL NUMBER: $X X X X X$
INSTITUTION: XXXXX
PI: $X X X X X$
TITLE: XXXXX
This CAREER proposal was evaluated in the C-CR Computer Systems Architecture (CSA) Program, and reviewed by a Special Emphasis Panel. The meeting was devoted to the review and evaluation of those CAREER proposals in the general area of Computer architecture that had been assigned to the CSA program this fiscal year. The review process for the Special Emphasis Panel is described in the panel minutes.

The panel reviewed a total of XX proposals. Results are tabulated in the appendix. Shown there are the individual reviewers' overall ratings and the panel ratings, of Fund (FND), Fund if Possible (FIP) and Do Not Fund (DNF). The results are:

- XX proposals ranked in the FND category;
- XX proposals grouped in the FIP category, and
ranked relative to each other within the category;
- XX proposals grouped in DNF category.

This proposal was initially ranked in the (FIP) category and later moved to the FND category by the panel. It has individual ratings of XEs, YV, and ZV/Gs which are good ratings within this particular panel group. The panel was quite impressed with this proposal, and it suggested that it has a high potential impact. On the less positive side, the panel thought that the goals of the proposal are very ambitious even though the PI is very capable. One panelist stated that the PI is perhaps the best researcher.... Another panelist praised the proposal and PI's background and his publication best researcher Another panelist praised the proposal and Pl's back
record. Other panelists... were generally supportive of the proposal...

The main thrust of this proposal is to develop...
I agree with the panel that this is an ambitious task. At the same time, the potential impact and benefits of ... that will be developed during the project for computer architecture
research can be huge. The PI's extremely well-qualified, and the work on... is already underway. Given all these facts, I have little reservation, if any, that the proposal may not succeed. Therefore, I recommend that it be funded subject to the reduction of the budget to
A. Yavuz Oruc

WHERE IS COMPUTER SYSTEMS ARCHITECTURE

 RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL
TREVER MUDGE
JAMES SMITH

JOEL EMMER

ROBERT COLWELL
FOREST BASKETT

NON-ARCHITECT'S
VIEW

AKA MY VIEW

NEXT SLIDE
RREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE

 RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL

TREVER MUDGE

JAMES SMITH

JOEL EMMER

ROBERT COLWELL

FOREST BASKETT

```
NON-ARCHITECT'S
VIEW
```


AKA MY VIEW

NEXT SLIDE
BREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE

 RESEARCH HEADED?

ARCHITECTS' VIEW DAVE PATTERSON

ANANT AGRAWAL
TREVER MUDGE

JAMES SMITH

JOEL EMMER

ROBERT COLWELL
FOREST BASKETT

NON-ARCHITECT'S VIEW

AKA MY VIEW

MEXT SLIDE
PREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE RESEARCH HEADED?

	http://www.cise.nsf.gov/evnt/wksp/smith.htm
	... networks of workstations,
	in my opinion, do not seem to be the solution to large scale computational problems. They seem to be useful primarily for throughputoriented computation. Many of the technical problems of the furst MPP\&, e.g. high latency,
	low bandwidth, difficulties in program development, also seem to be present in networks of workstations only much worse.
	It is my opinion that non-numeric
	applications should be the drivers for future processor archítecture
	are important, they tend to be limited more by data path considerations than
	control.
	In genverat, paratletism tends to be easier to find in numeric applications. And methods that can exploit the irregular
	parallelism of non-numeric applications can likely be applied to those portions of
	numeric applications that are more difficult to paralletize.

ARCHITECTS' VIEW
DAVE PATTERSON

ANANT AGRAWAL
TREVER MUDGE
JAMES SMITH
JOEL EMMER
ROBERT COLWELL

FOREST BASKETT

NON-ARCHITECT'S
 VIEW

AKA MY VIEW

NEXT SLIDE

PREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE

 RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL

TREVER MUDGE

JAMES SMITH
 JOEL EMMER
 ROBERT COLWELL
 FOREST BASKETT
 NON-ARCHITECT'S
 VIEW
 AKA MY VIEW
 NEXT SLIDE
 BREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE

 RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL

TREVER MUDGE

JAMES SMITH

JOEL EMMER

ROBERT COLWELL
FOREST BASKETT

NON-ARCHITECT'S
 VIEW

AKA MY VIEW

NEXT SLIDE
PREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL
TREVER MUDGE

JAMES SMITH
 JOEL EMMER
 ROBERT COLWELL
 FOREST BASKETT
 ```NON-ARCHITECT'S \\ VIEW```

AKA MY VIEW

NEXT SLIDE
PREVIOUS SLIDE

WHERE IS COMPUTER SYSTEMS ARCHITECTURE RESEARCH HEADED?

ARCHITECTS' VIEW
DAVE PATTERSON
ANANT AGRAWAL

TREVER MUDGE

JAMES SMITH

JOEL EMMER

ROBERT COLWELL

FOREST BASKETT

NON-ARCHITECT'S
VIEW
AKA MY VIEW
NEXT SLIDE
PREVIOUS SLIDE

PARTING REMARKS

Computer architecture research has been a melting pot of theoretical concepts for devising concrete
techniques to design and develop computing systems of all sorts eversince the early pioneers embark upon building computers with bulky vacuum tubes.

It appears that, once again, computer architects are presented with a golden opportunity to break new ground, this time, to architect molecules into artifacts of all kinds, not just computer systems as we have known them.
Among the key questions that need to be addressed are (as identified at the 1 st Molecular Architecture Workshop, Nov. 2001)
-How can the molecular level interactions be expressed in abstract ways, how can such abstractions be translated into primituve building blocks, and what kinds of models and design tools should be used to emphasize such interactions?

- How does one develop new design strategies for combining such primitive building blocks into larger functional subsystems, and then scale them into even larger molecular systems?

CONCLUSIONS

MICROARCHITECT

How could such molecular systems be interfaced with legacy technologies such as silicon?
In my view, confronting and tackling questions such as these on molecular and other nano scale structures holds the key to building as rich a track-record of computer architecture research in the next two decades as we have seen during the last two decades.

PARTING REMARKS

To AUl MicroArchitects*

Microarchitects love to
speculate values and such
for more mips and whetstones
but not by so much!
One less clock-tick here,
another saved there
It sure pays to execute
threads everywhere!
Stalls are so painful,
squashes are sheer torture
Yet they are every
microarchitect's overture!
Moore claimed transistors habitually double in a chip
In the hands of microarchitects
this has become a whip!
Billion transistor circuits
finally appear to be in sight
To speculate them will sure
be every μ architect's birth right!
*It can be argued that the PC s on our desktops have reached their MFLOPS performance because of the Moore's Law but without the significant discoveries in the microarchitecture research, it is difficult to imagine that the sheer doubling of circuit densities every 18 months would have brought us all of this impressive performance.

CONCLUSIONS

MICROARCHITECT

NEXT SLIDE

