Making the Right Hand Turn to Power Efficient Computing

Justin Rattner

Intel Fellow and Director
Microprocessor Research Labs
Intel Corporation

Outline

- Technology scaling
- Types of efficiency
- Making the right hand turn

Historic Perspective

Scaling will continue

Microprocessor **Research**

Technology Scaling

X & Y Dimensions scale down by 30%	Doubles transistor density
Z-Oxide thickness scales down	Faster transistor, higher performance
Vcc & Vt scaling	Lower active power

Technology scaling is a great thing

Supply Voltage Scaling

Supply voltage scaling has slowed

Active Power Projection

Assumptions:

- 15% Vdd scaling
- 50% Freq scaling (Per generation)

Power will limit transistor integration

Sub-threshold Leakage

Transistors will be dimmers, not switches

SD Leakage Power

Assumptions:

- 15% Vdd scaling
- 5X loff scaling (Per generation)

Excessive sub-threshold leakage power

Variations in P, V, and T

Process

- Die-to-die variation
- Within-die variation
- Static for each die

Voltage

Time (usec)

- Current delivery RLC
- Dynamic: ns to 10-100us
- Within-die variation

Time (usec)

- Activity & ambient change
- Dynamic: 100-1000us
- Within-die variation

Time dependent degradation

Impact of Critical Paths

Impact of transistor parameter variations:

- Wide distribution of circuit frequency
- Lower mean freq with # of critical paths
- Encourages more localized, clustered designs

Tough Platform Demands

Shrinking volume
Reduced Noise
Yet, Higher Performance

Pentium ® III

Pentium ® 4

Projected Air Flow Rate

Projected Air Flow

Reduced thermal budget
Higher heat sink volume
Higher air flow rate

BOM Cost Squeeze

\$2000 PC cost ('97)

Budget for power and cooling is shrinking

Microprocessor **Research**

Data Centers: Rack Mount Limits

Wasted space and higher cost in future

Outline

- Technology scaling
- Looking at efficiency
- Making a right hand turn

Power Efficiency

In the same process technology, compare:

Scalar ⇒ Super-scalar

⇒ Dynamic

⇒ Deep pipe

2-3X Growth in area

~1.4X Growth in Integer Performance

~1.7X Growth in Total Performance

2-2.5X Growth in Power

2-2.5x growth in power / generation

Energy Efficiency

20-30% drop in energy efficiency / generation

Circuit Efficiency

Assumptions:
Activity: Static = 0.2,
Domino = 0.5
Clock consumes 40%
of full chip power

Faster circuits contribute to power inefficiency

Outline

- Technology scaling
- Types of efficiency
- Making a right hand turn

Power Comes First

Microprocessor **Research**

Low Power and High Performance

Maximize battery life (fixed energy)

 $Energy = Texec * Power \approx (1/Perf) * Power$

Increasing the Performance by 10% and the Power by 10% will end up with same battery life

 Maximize performance within a given power envelope (Thermal constrains)

$$f \approx K*V$$
 $Power = \alpha*C*V^2*f \approx \alpha*C*f^3$
 $\Delta power/Power = ((f+\Delta f)^3 - f^3)/f^3 \approx 3\Delta f/f$
 $Perf = IPC*f$

→ The right trade off between Performance and Power

 $\triangle IPC < 3\triangle Power is the metric$

"Less is More"

- Strive to accomplish the same task in less energy and less time
 - Higher performance at lower energy can always be traded with same performance at lower power
- Methodology works at all levels
 - Aggressive clock gating
 - Caching dumb and smart
 - Better branch predictors
 - Smart work reduction
 - Prioritize useful over speculated work
 - Fixed functions

"Less is More" in Banias

- Improved branch prediction
 - Over 20% fewer branch mispredictions
- Dedicated stack manager
 - Over 5% uop reduction
- Uop fusion
 - Over 10% uop reduction
- Big L2 cache

Achieving Higher Performance at Lower Power

Reducing Active Power

Throughput Oriented Design

Vdd/2
Logic Block

Freq = 0.5 Vdd = 0.5 Throughput = 1 **Power = 0.25**

Logic Block

Area = 2

Pwr Den = 0.125

Critical Scheduling

www.intel.com/labs

Recycling Waste

- Wasted execution
 - Spec Exec vs Retired
 - ~30% in 1st gen OOO
 - ~60% in 2nd gen OOO
 - ~160% in future

- Leverage info from wasted execution
- Improve branch Prediction
 - 30% reduction in mispredication rate
 - 18% to 48% less wasted execution
- Can we reuse the some of the execution result too?

Efficiency Through xMT

Multithreading improves performance without impacting thermals & power delivery

Power Efficient Asymmetric Threads

Function
AsymmetricThreading
(w/co-processor ISA)

- Partition single thread into a main thread with special function threads
- Special function unit is more area and power efficient

- Performance Asymmetric Threading (ISA compatible)
 - Serial code on heavy core
 - Parallel code on smaller and power efficient core

Chip Multi-Processing

- Multi-core, each core MT
- Shared cache and front side bus
- Each core has different Vdd & Freq
- Core re-cycling to spread hot spots
- Lower junction temperature

Summary

- Technology scaling can and will continue
- Challenges to power and energy efficiency are real but surmountable..
- ..through evolutionary approaches to circuits and microarchitecture

